Menu Close

Question-182459




Question Number 182459 by HeferH last updated on 09/Dec/22
Commented by HeferH last updated on 09/Dec/22
how is this calculator gettin these complex   values ?
$${how}\:{is}\:{this}\:{calculator}\:{gettin}\:{these}\:{complex} \\ $$$$\:{values}\:? \\ $$
Commented by MJS_new last updated on 09/Dec/22
It′s wrong. It′s not calculating the root, it′s  instead solving x^(16) =2^(15) . You should get a  better calculator.
$$\mathrm{It}'\mathrm{s}\:\mathrm{wrong}.\:\mathrm{It}'\mathrm{s}\:{not}\:\mathrm{calculating}\:\mathrm{the}\:\mathrm{root},\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{instead}\:\mathrm{solving}\:{x}^{\mathrm{16}} =\mathrm{2}^{\mathrm{15}} .\:\mathrm{You}\:\mathrm{should}\:\mathrm{get}\:\mathrm{a} \\ $$$$\mathrm{better}\:\mathrm{calculator}. \\ $$
Commented by Acem last updated on 10/Dec/22
What should be the answer?
$${What}\:{should}\:{be}\:{the}\:{answer}? \\ $$
Commented by MJS_new last updated on 10/Dec/22
1.915...  (2^(15) )^(1/(16)) =((32768))^(1/(16)) ∈R^+
$$\mathrm{1}.\mathrm{915}… \\ $$$$\sqrt[{\mathrm{16}}]{\mathrm{2}^{\mathrm{15}} }=\sqrt[{\mathrm{16}}]{\mathrm{32768}}\in\mathbb{R}^{+} \\ $$
Commented by Acem last updated on 10/Dec/22
Yes Sir , but^(16) (√(32 768)) = 1.915...   so what′s the issue?
$${Yes}\:{Sir}\:,\:{but}\:^{\mathrm{16}} \sqrt{\mathrm{32}\:\mathrm{768}}\:=\:\mathrm{1}.\mathrm{915}… \\ $$$$\:{so}\:{what}'{s}\:{the}\:{issue}? \\ $$
Commented by Acem last updated on 10/Dec/22
Commented by Acem last updated on 10/Dec/22
 what′s the problem with this result?
$$\:{what}'{s}\:{the}\:{problem}\:{with}\:{this}\:{result}? \\ $$
Commented by MJS_new last updated on 10/Dec/22
no problem with this result, but the calculator  shows a complex solution too which is wrong
$$\mathrm{no}\:\mathrm{problem}\:\mathrm{with}\:{this}\:\mathrm{result},\:\mathrm{but}\:\mathrm{the}\:\mathrm{calculator} \\ $$$$\mathrm{shows}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{solution}\:\mathrm{too}\:\mathrm{which}\:\mathrm{is}\:\mathrm{wrong} \\ $$
Commented by mr W last updated on 10/Dec/22
this is not a problem of the app.  it displays all roots, because in this  case the user has chosen to let it  display all roots in complex mode.  if this information confuses you,  you should not let the app to display  it. in settings you only need to select  “Only Principal Root” instead of  “All Roots”.
$${this}\:{is}\:{not}\:{a}\:{problem}\:{of}\:{the}\:{app}. \\ $$$${it}\:{displays}\:{all}\:{roots},\:{because}\:{in}\:{this} \\ $$$${case}\:{the}\:{user}\:{has}\:{chosen}\:{to}\:{let}\:{it} \\ $$$${display}\:{all}\:{roots}\:{in}\:{complex}\:{mode}. \\ $$$${if}\:{this}\:{information}\:{confuses}\:{you}, \\ $$$${you}\:{should}\:{not}\:{let}\:{the}\:{app}\:{to}\:{display} \\ $$$${it}.\:{in}\:{settings}\:{you}\:{only}\:{need}\:{to}\:{select} \\ $$$$“{Only}\:{Principal}\:{Root}''\:{instead}\:{of} \\ $$$$“{All}\:{Roots}''. \\ $$
Commented by mr W last updated on 10/Dec/22
Commented by mr W last updated on 10/Dec/22
you get with “Only Principal Root”:
$${you}\:{get}\:{with}\:“{Only}\:{Principal}\:{Root}'': \\ $$
Commented by mr W last updated on 10/Dec/22
Commented by mr W last updated on 10/Dec/22
you get with “All Roots”:
$${you}\:{get}\:{with}\:“{All}\:{Roots}'': \\ $$
Commented by mr W last updated on 10/Dec/22
Commented by mr W last updated on 10/Dec/22
by default the app doesn′t use   complex mode and doesn′t display  all roots. so i don′t understand  those people who explicitly want the   app use complex mode and display   all roots, and then are confused when  the app indeed does this.
$${by}\:{default}\:{the}\:{app}\:{doesn}'{t}\:{use}\: \\ $$$${complex}\:{mode}\:{and}\:{doesn}'{t}\:{display} \\ $$$${all}\:{roots}.\:{so}\:{i}\:{don}'{t}\:{understand} \\ $$$${those}\:{people}\:{who}\:{explicitly}\:{want}\:{the}\: \\ $$$${app}\:{use}\:{complex}\:{mode}\:{and}\:{display}\: \\ $$$${all}\:{roots},\:{and}\:{then}\:{are}\:{confused}\:{when} \\ $$$${the}\:{app}\:{indeed}\:{does}\:{this}. \\ $$
Commented by MJS_new last updated on 10/Dec/22
I hereby give up.  people started to mix up x=(√4) and x^2 =4  and now the app makers also do this. use it  as you like, but it′s against the definitions.  if (2^(15) )^(1/(16))  ∉R then you also have to accept  (√4)=−2 with all kinds of weird logical  problems.  i.e. ∣z∣≥0∀z∈C and ∣a+bi∣=(√(a^2 +b^2 ))  but what if z=((16))^(1/4) +((81))^(1/4) i? how many values  is z at once or which value is the “main value”?  and (√((((16))^(1/4) )^2 +(((81))^(1/4) )^2 )) can not only be <0 but  also be a complex number???  or simply:  (√4)+(√4)=0  proof:  (√4)=−2∨(√4)=2  ⇒ (√4)+(√4)=−2+2=0  I′ll keep following the rules I learned 35 years  ago, everybody else is free to use whatever  they want.
$$\mathrm{I}\:\mathrm{hereby}\:\mathrm{give}\:\mathrm{up}. \\ $$$$\mathrm{people}\:\mathrm{started}\:\mathrm{to}\:\mathrm{mix}\:\mathrm{up}\:{x}=\sqrt{\mathrm{4}}\:\mathrm{and}\:{x}^{\mathrm{2}} =\mathrm{4} \\ $$$$\mathrm{and}\:\mathrm{now}\:\mathrm{the}\:\mathrm{app}\:\mathrm{makers}\:\mathrm{also}\:\mathrm{do}\:\mathrm{this}.\:\mathrm{use}\:\mathrm{it} \\ $$$$\mathrm{as}\:\mathrm{you}\:\mathrm{like},\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{against}\:\mathrm{the}\:\mathrm{definitions}. \\ $$$$\mathrm{if}\:\sqrt[{\mathrm{16}}]{\mathrm{2}^{\mathrm{15}} }\:\notin\mathbb{R}\:\mathrm{then}\:\mathrm{you}\:\mathrm{also}\:\mathrm{have}\:\mathrm{to}\:\mathrm{accept} \\ $$$$\sqrt{\mathrm{4}}=−\mathrm{2}\:\mathrm{with}\:\mathrm{all}\:\mathrm{kinds}\:\mathrm{of}\:\mathrm{weird}\:\mathrm{logical} \\ $$$$\mathrm{problems}. \\ $$$$\mathrm{i}.\mathrm{e}.\:\mid{z}\mid\geqslant\mathrm{0}\forall{z}\in\mathbb{C}\:\mathrm{and}\:\mid{a}+{b}\mathrm{i}\mid=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\mathrm{but}\:\mathrm{what}\:\mathrm{if}\:{z}=\sqrt[{\mathrm{4}}]{\mathrm{16}}+\sqrt[{\mathrm{4}}]{\mathrm{81}}\mathrm{i}?\:\mathrm{how}\:\mathrm{many}\:\mathrm{values} \\ $$$$\mathrm{is}\:{z}\:\mathrm{at}\:\mathrm{once}\:\mathrm{or}\:\mathrm{which}\:\mathrm{value}\:\mathrm{is}\:\mathrm{the}\:“\mathrm{main}\:\mathrm{value}''? \\ $$$$\mathrm{and}\:\sqrt{\left(\sqrt[{\mathrm{4}}]{\mathrm{16}}\right)^{\mathrm{2}} +\left(\sqrt[{\mathrm{4}}]{\mathrm{81}}\right)^{\mathrm{2}} }\:\mathrm{can}\:\mathrm{not}\:\mathrm{only}\:\mathrm{be}\:<\mathrm{0}\:\mathrm{but} \\ $$$$\mathrm{also}\:\mathrm{be}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}??? \\ $$$$\mathrm{or}\:\mathrm{simply}: \\ $$$$\sqrt{\mathrm{4}}+\sqrt{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{proof}: \\ $$$$\sqrt{\mathrm{4}}=−\mathrm{2}\vee\sqrt{\mathrm{4}}=\mathrm{2} \\ $$$$\Rightarrow\:\sqrt{\mathrm{4}}+\sqrt{\mathrm{4}}=−\mathrm{2}+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{keep}\:\mathrm{following}\:\mathrm{the}\:\mathrm{rules}\:\mathrm{I}\:\mathrm{learned}\:\mathrm{35}\:\mathrm{years} \\ $$$$\mathrm{ago},\:\mathrm{everybody}\:\mathrm{else}\:\mathrm{is}\:\mathrm{free}\:\mathrm{to}\:\mathrm{use}\:\mathrm{whatever} \\ $$$$\mathrm{they}\:\mathrm{want}. \\ $$
Commented by MJS_new last updated on 10/Dec/22
if these “new rules” are used  ((x+3))^(1/4) −(√(x+4))=3  has 2 solutions:  x_1 ≈−.816094359  x_2 ≈23.8367388  someone prove the opposite...
$$\mathrm{if}\:\mathrm{these}\:“\mathrm{new}\:\mathrm{rules}''\:\mathrm{are}\:\mathrm{used} \\ $$$$\sqrt[{\mathrm{4}}]{{x}+\mathrm{3}}−\sqrt{{x}+\mathrm{4}}=\mathrm{3} \\ $$$$\mathrm{has}\:\mathrm{2}\:\mathrm{solutions}: \\ $$$${x}_{\mathrm{1}} \approx−.\mathrm{816094359} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{23}.\mathrm{8367388} \\ $$$$\mathrm{someone}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{opposite}… \\ $$
Commented by mr W last updated on 10/Dec/22
i totally agree with sir! basically it  is clear and 100% correct what you   said.  but as about the app, i don′t think that  the app makes an error. it states  clearly that it displays all roots of  a number in complex plane.  in complex mode this app means   with (3)^(1/3)  simply the roots of the number  3 in complex plane.
$${i}\:{totally}\:{agree}\:{with}\:{sir}!\:{basically}\:{it} \\ $$$${is}\:{clear}\:{and}\:\mathrm{100\%}\:{correct}\:{what}\:{you}\: \\ $$$${said}. \\ $$$${but}\:{as}\:{about}\:{the}\:{app},\:{i}\:{don}'{t}\:{think}\:{that} \\ $$$${the}\:{app}\:{makes}\:{an}\:{error}.\:{it}\:{states} \\ $$$${clearly}\:{that}\:{it}\:{displays}\:{all}\:{roots}\:{of} \\ $$$${a}\:{number}\:{in}\:{complex}\:{plane}. \\ $$$${in}\:{complex}\:{mode}\:{this}\:{app}\:{means}\: \\ $$$${with}\:\sqrt[{\mathrm{3}}]{\mathrm{3}}\:{simply}\:{the}\:{roots}\:{of}\:{the}\:{number} \\ $$$$\mathrm{3}\:{in}\:{complex}\:{plane}. \\ $$
Commented by Acem last updated on 10/Dec/22
Yes I agree with you Sir MJS
$${Yes}\:{I}\:{agree}\:{with}\:{you}\:{Sir}\:{MJS} \\ $$
Commented by Acem last updated on 10/Dec/22
The wrong is not with the application but with   how it is used. The option CPLX must chosen just   for R^( −)
$${The}\:{wrong}\:{is}\:{not}\:{with}\:{the}\:{application}\:{but}\:{with} \\ $$$$\:{how}\:{it}\:{is}\:{used}.\:{The}\:{option}\:{CPLX}\:{must}\:{chosen}\:{just} \\ $$$$\:{for}\:\mathbb{R}^{\:−} \: \\ $$
Commented by Acem last updated on 10/Dec/22

Leave a Reply

Your email address will not be published. Required fields are marked *