Menu Close

Question-182494




Question Number 182494 by universe last updated on 10/Dec/22
Commented by cortano1 last updated on 11/Dec/22
(c) π
$$\left(\mathrm{c}\right)\:\pi \\ $$
Commented by mr W last updated on 11/Dec/22
but the curve doesn′t enclose an area!  t→∞ (x,y) ⇒(−∞,0)  t→−∞ (x,y) ⇒(∞,0)
$${but}\:{the}\:{curve}\:{doesn}'{t}\:{enclose}\:{an}\:{area}! \\ $$$${t}\rightarrow\infty\:\left({x},{y}\right)\:\Rightarrow\left(−\infty,\mathrm{0}\right) \\ $$$${t}\rightarrow−\infty\:\left({x},{y}\right)\:\Rightarrow\left(\infty,\mathrm{0}\right) \\ $$
Commented by mr W last updated on 11/Dec/22
Commented by Frix last updated on 11/Dec/22
It′s one of these questions where we have to  guess what′s really meant. If t^3  is really  t^2  we can find the answer π.
$$\mathrm{It}'\mathrm{s}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:\mathrm{questions}\:\mathrm{where}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{guess}\:\mathrm{what}'\mathrm{s}\:{really}\:\mathrm{meant}.\:\mathrm{If}\:{t}^{\mathrm{3}} \:\mathrm{is}\:{really} \\ $$$${t}^{\mathrm{2}} \:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{answer}\:\pi. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *