Menu Close

Question-182508




Question Number 182508 by peter frank last updated on 10/Dec/22
Answered by mahdipoor last updated on 10/Dec/22
lim f(x) , x→c =F  ⇔∀ε_1 >0  ∃δ_1 >0  ∣x−c∣<δ_1 ⇒∣F−f(x)∣<ε_1   lim g(x) , x→c =G  ⇔∀ε_2 >0  ∃δ_2 >0  ∣x−c∣<δ_2 ⇒∣G−g(x)∣<ε_2   ,  ∀ε=ε_1 +ε_2    ∃δ= max(δ_1 ,δ_2  )  ∣x−c∣<δ ⇒  ∣(F+G)−(f(x)+g(x))∣≤∣F−f(x)∣+∣G−g(x)∣<ε_1 +ε_2 =ε  ⇔  lim (f+g) , x→c = F+G
$${lim}\:{f}\left({x}\right)\:,\:{x}\rightarrow{c}\:={F} \\ $$$$\Leftrightarrow\forall\epsilon_{\mathrm{1}} >\mathrm{0}\:\:\exists\delta_{\mathrm{1}} >\mathrm{0}\:\:\mid{x}−{c}\mid<\delta_{\mathrm{1}} \Rightarrow\mid{F}−{f}\left({x}\right)\mid<\epsilon_{\mathrm{1}} \\ $$$${lim}\:{g}\left({x}\right)\:,\:{x}\rightarrow{c}\:={G} \\ $$$$\Leftrightarrow\forall\epsilon_{\mathrm{2}} >\mathrm{0}\:\:\exists\delta_{\mathrm{2}} >\mathrm{0}\:\:\mid{x}−{c}\mid<\delta_{\mathrm{2}} \Rightarrow\mid{G}−{g}\left({x}\right)\mid<\epsilon_{\mathrm{2}} \\ $$$$, \\ $$$$\forall\varepsilon=\epsilon_{\mathrm{1}} +\epsilon_{\mathrm{2}} \:\:\:\exists\delta=\:{max}\left(\delta_{\mathrm{1}} ,\delta_{\mathrm{2}} \:\right) \\ $$$$\mid{x}−{c}\mid<\delta\:\Rightarrow \\ $$$$\mid\left({F}+{G}\right)−\left({f}\left({x}\right)+{g}\left({x}\right)\right)\mid\leqslant\mid{F}−{f}\left({x}\right)\mid+\mid{G}−{g}\left({x}\right)\mid<\epsilon_{\mathrm{1}} +\epsilon_{\mathrm{2}} =\varepsilon \\ $$$$\Leftrightarrow \\ $$$${lim}\:\left({f}+{g}\right)\:,\:{x}\rightarrow{c}\:=\:{F}+{G} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *