Menu Close

Question-182623




Question Number 182623 by Acem last updated on 12/Dec/22
Commented by Acem last updated on 12/Dec/22
 Find x°
$$\:{Find}\:{x}° \\ $$
Answered by HeferH last updated on 12/Dec/22
Commented by Acem last updated on 12/Dec/22
Thanks freind!
$${Thanks}\:{freind}! \\ $$
Commented by manxsol last updated on 12/Dec/22
Sir HeferH, how building polygon
$${Sir}\:{HeferH},\:{how}\:{building}\:{polygon} \\ $$
Commented by Acem last updated on 12/Dec/22
Commented by Acem last updated on 12/Dec/22
Our friend codes his solutions   :D
$${Our}\:{friend}\:{codes}\:{his}\:{solutions}\:\:\::{D} \\ $$
Commented by Acem last updated on 12/Dec/22
△ ACD we found that x= 60− 2α   & after mirror we found that x= 2α^(According to the polyg.)    ⇒ α= 15°  hence x= 30°
$$\bigtriangleup\:{ACD}\:{we}\:{found}\:{that}\:{x}=\:\mathrm{60}−\:\mathrm{2}\alpha \\ $$$$\:\&\:{after}\:{mirror}\:{we}\:{found}\:{that}\:{x}=\:\mathrm{2}\alpha\:^{{According}\:{to}\:{the}\:{polyg}.} \\ $$$$\:\Rightarrow\:\alpha=\:\mathrm{15}°\:\:{hence}\:{x}=\:\mathrm{30}° \\ $$$$ \\ $$
Commented by manxsol last updated on 12/Dec/22
thanks ,my geometry is hard.
$${thanks}\:,{my}\:{geometry}\:{is}\:{hard}. \\ $$$$ \\ $$
Commented by Acem last updated on 12/Dec/22
It will be easy inshaAllah, just go deep                     &        pull things apart!
$${It}\:{will}\:{be}\:{easy}\:{inshaAllah},\:{just}\:{go}\:{deep} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\& \\ $$$$\:\:\:\:\:\:{pull}\:{things}\:{apart}! \\ $$$$ \\ $$
Answered by manxsol last updated on 12/Dec/22
Commented by manxsol last updated on 12/Dec/22
Saludos,Sir Acem
$${Saludos},{Sir}\:{Acem} \\ $$
Commented by Acem last updated on 12/Dec/22
Saludos y aprecio por tu clase y hermosa persona!
$${Saludos}\:{y}\:{aprecio}\:{por}\:{tu}\:{clase}\:{y}\:{hermosa}\:{persona}! \\ $$
Commented by Acem last updated on 12/Dec/22
Oh my friend, so you′re going to make me dizzy   while am spinning on a circle of radius 1  ):
$${Oh}\:{my}\:{friend},\:{so}\:{you}'{re}\:{going}\:{to}\:{make}\:{me}\:{dizzy} \\ $$$$\left.\:{while}\:{am}\:{spinning}\:{on}\:{a}\:{circle}\:{of}\:{radius}\:\mathrm{1}\:\:\right): \\ $$$$ \\ $$
Commented by manxsol last updated on 12/Dec/22
My favorite equation is     (ω)^2 +(αςεm)^2 =1
$${My}\:{favorite}\:{equation}\:{is} \\ $$$$\:\:\:\left(\omega\right)^{\mathrm{2}} +\left(\alpha\varsigma\epsilon{m}\right)^{\mathrm{2}} =\mathrm{1} \\ $$
Commented by Acem last updated on 12/Dec/22
 You′re a wicked man more than our friend, so   you′re going to spin us in  that circle till dizzy (:   Oh, but why our friend removed his comment ):   i just kidding with him (:
$$\:{You}'{re}\:{a}\:{wicked}\:{man}\:{more}\:{than}\:{our}\:{friend},\:{so} \\ $$$$\:{you}'{re}\:{going}\:{to}\:{spin}\:{us}\:{in}\:\:{that}\:{circle}\:{till}\:{dizzy}\:\left(:\right. \\ $$$$\left.\:{Oh},\:{but}\:{why}\:{our}\:{friend}\:{removed}\:{his}\:{comment}\:\right): \\ $$$$\:{i}\:{just}\:{kidding}\:{with}\:{him}\:\left(:\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *