Menu Close

Question-182721




Question Number 182721 by mnjuly1970 last updated on 13/Dec/22
Answered by Acem last updated on 13/Dec/22
 It period: T= (1/a)   f(x)=1 ⇒ b=1  lim_(x→((15^( −) )/2))  f(x)= −∞ ⇒ cos πax= cos (π^( +) /2) ⇒ a<0   π a x= π/2 ± 2πk   when x= ((15)/2) : a= (1/(15)) ± (4/(15)) k^(am at problem of k)    this term should be negative cause a< 0   so for k=1 and with minus mark_( But why not 2, 3, ..?)    a= (1/(15)) −(4/(15)) ⇒ a= ((−1)/5)   f(x)= tan ((−π)/5) x +1  _(continue...)       f(x)= 0 ⇒ tan (π/(15)) x = −1 = tan (((3 π)/4) +πk)   According to the diagram k=0 , k=1   x_A = ((45)/4) , x_B = ((105)/4) ⇒ Σ= ((75)/2) ≠ {a, b, c, d}
$$\:{It}\:{period}:\:{T}=\:\frac{\mathrm{1}}{{a}} \\ $$$$\:{f}\left({x}\right)=\mathrm{1}\:\Rightarrow\:{b}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\frac{\mathrm{15}^{\:−} }{\mathrm{2}}} {\mathrm{lim}}\:{f}\left({x}\right)=\:−\infty\:\Rightarrow\:\mathrm{cos}\:\pi{ax}=\:\mathrm{cos}\:\frac{\pi^{\:+} }{\mathrm{2}}\:\Rightarrow\:{a}<\mathrm{0} \\ $$$$\:\pi\:{a}\:{x}=\:\pi/\mathrm{2}\:\pm\:\mathrm{2}\pi{k} \\ $$$$\:{when}\:{x}=\:\frac{\mathrm{15}}{\mathrm{2}}\::\:{a}=\:\frac{\mathrm{1}}{\mathrm{15}}\:\underbrace{\pm\:\frac{\mathrm{4}}{\mathrm{15}}\:{k}}\:^{{am}\:{at}\:{problem}\:{of}\:{k}} \\ $$$$\:{this}\:{term}\:{should}\:{be}\:{negative}\:{cause}\:{a}<\:\mathrm{0} \\ $$$$\:{so}\:{for}\:{k}=\mathrm{1}\:{and}\:{with}\:{minus}\:{mark}_{\:{But}\:{why}\:{not}\:\mathrm{2},\:\mathrm{3},\:..?} \\ $$$$\:{a}=\:\frac{\mathrm{1}}{\mathrm{15}}\:−\frac{\mathrm{4}}{\mathrm{15}}\:\Rightarrow\:{a}=\:\frac{−\mathrm{1}}{\mathrm{5}} \\ $$$$\:{f}\left({x}\right)=\:\mathrm{tan}\:\frac{−\pi}{\mathrm{5}}\:{x}\:+\mathrm{1}\:\:_{{continue}…} \\ $$$$\: \\ $$$$\cancel{\:{f}\left({x}\right)=\:\mathrm{0}\:\Rightarrow\:\mathrm{tan}\:\frac{\pi}{\mathrm{15}}\:{x}\:=\:−\mathrm{1}\:=\:\mathrm{tan}\:\left(\frac{\mathrm{3}\:\pi}{\mathrm{4}}\:+\pi{k}\right)} \\ $$$$\:{According}\:{to}\:{the}\:{diagram}\:{k}=\mathrm{0}\:,\:{k}=\mathrm{1} \\ $$$$\cancel{\:{x}_{{A}} =\:\frac{\mathrm{45}}{\mathrm{4}}\:,\:{x}_{{B}} =\:\frac{\mathrm{105}}{\mathrm{4}}\:\Rightarrow\:\Sigma=\:\frac{\mathrm{75}}{\mathrm{2}}\:\neq\:\left\{{a},\:{b},\:{c},\:{d}\right\}} \\ $$
Answered by mahdipoor last updated on 13/Dec/22
f(0)=b=1 ⇒   x^− →((15)/2)  ⇒ f→−∞ ⇒  a<0  lim f(x)=±∞ ⇔ πax→(π/2)+πk    k∈Z  ⇒x→(1/(2a))+(k/a)    ⇒    x→((15)/2)=(1/(2a))+((−2)/a)=((−3)/(2a))  ⇒a=−(1/5)  f(x)=tan(−(π/5)x)+1=0 ⇒   x=(5/4),5+(5/4),...  x_A +x_B =((5/4))+((5/4)+5)=7.5
$${f}\left(\mathrm{0}\right)={b}=\mathrm{1}\:\Rightarrow\: \\ $$$${x}^{−} \rightarrow\frac{\mathrm{15}}{\mathrm{2}}\:\:\Rightarrow\:{f}\rightarrow−\infty\:\Rightarrow\:\:{a}<\mathrm{0} \\ $$$${lim}\:{f}\left({x}\right)=\pm\infty\:\Leftrightarrow\:\pi{ax}\rightarrow\frac{\pi}{\mathrm{2}}+\pi{k}\:\:\:\:{k}\in{Z} \\ $$$$\Rightarrow{x}\rightarrow\frac{\mathrm{1}}{\mathrm{2}{a}}+\frac{{k}}{{a}}\:\:\:\:\Rightarrow\:\:\:\:{x}\rightarrow\frac{\mathrm{15}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}{a}}+\frac{−\mathrm{2}}{{a}}=\frac{−\mathrm{3}}{\mathrm{2}{a}} \\ $$$$\Rightarrow{a}=−\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${f}\left({x}\right)={tan}\left(−\frac{\pi}{\mathrm{5}}{x}\right)+\mathrm{1}=\mathrm{0}\:\Rightarrow\:\:\:{x}=\frac{\mathrm{5}}{\mathrm{4}},\mathrm{5}+\frac{\mathrm{5}}{\mathrm{4}},… \\ $$$${x}_{{A}} +{x}_{{B}} =\left(\frac{\mathrm{5}}{\mathrm{4}}\right)+\left(\frac{\mathrm{5}}{\mathrm{4}}+\mathrm{5}\right)=\mathrm{7}.\mathrm{5} \\ $$
Commented by Acem last updated on 13/Dec/22
Hello Sir! why k= −2 when x→ ((15)/2)
$${Hello}\:{Sir}!\:{why}\:{k}=\:−\mathrm{2}\:{when}\:{x}\rightarrow\:\frac{\mathrm{15}}{\mathrm{2}} \\ $$
Commented by mahdipoor last updated on 13/Dec/22
Hi , when a<0 and x>0 ⇒ πax<0  in first vertical line : πax=−(π/2)  and in secend line : πax=((−π)/2)−π=((−3π)/2)  ...  x=((15)/2) is secend line so  πax=(π/2)+kπ=((−3π)/2) ⇒ k=−2
$${Hi}\:,\:{when}\:{a}<\mathrm{0}\:{and}\:{x}>\mathrm{0}\:\Rightarrow\:\pi{ax}<\mathrm{0} \\ $$$${in}\:{first}\:{vertical}\:{line}\::\:\pi{ax}=−\frac{\pi}{\mathrm{2}} \\ $$$${and}\:{in}\:{secend}\:{line}\::\:\pi{ax}=\frac{−\pi}{\mathrm{2}}−\pi=\frac{−\mathrm{3}\pi}{\mathrm{2}} \\ $$$$… \\ $$$${x}=\frac{\mathrm{15}}{\mathrm{2}}\:{is}\:{secend}\:{line}\:{so} \\ $$$$\pi{ax}=\frac{\pi}{\mathrm{2}}+{k}\pi=\frac{−\mathrm{3}\pi}{\mathrm{2}}\:\Rightarrow\:{k}=−\mathrm{2} \\ $$
Commented by Acem last updated on 13/Dec/22
Hi Sir! thank you very much   In fact there are still tow problems:       a• how do i know that it′s the first assymptot       b• you said that πax= ((−π)/2) that mean k=−1            how do i know that k here = −1      Thought that we may can say that the 1st   assymptot is when k=0 not −1
$${Hi}\:{Sir}!\:{thank}\:{you}\:{very}\:{much} \\ $$$$\:{In}\:{fact}\:{there}\:{are}\:{still}\:{tow}\:{problems}: \\ $$$$\:\:\:\:\:{a}\bullet\:{how}\:{do}\:{i}\:{know}\:{that}\:{it}'{s}\:{the}\:{first}\:{assymptot} \\ $$$$\:\:\:\:\:{b}\bullet\:{you}\:{said}\:{that}\:\pi{ax}=\:\frac{−\pi}{\mathrm{2}}\:{that}\:{mean}\:{k}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:{how}\:{do}\:{i}\:{know}\:{that}\:{k}\:{here}\:=\:−\mathrm{1} \\ $$$$ \\ $$$$\:\:{Thought}\:{that}\:{we}\:{may}\:{can}\:{say}\:{that}\:{the}\:\mathrm{1}{st} \\ $$$$\:{assymptot}\:{is}\:{when}\:{k}=\mathrm{0}\:{not}\:−\mathrm{1} \\ $$$$\: \\ $$
Commented by mahdipoor last updated on 14/Dec/22
[k] is not important , [πax_2 =πa((15)/2)=((−3π)/2)]   is important, im say [πax=(π/2)+kπ] so   k=−2 when [πax_2 =((−3π)/2)=(π/2)+(−2)π]
$$\left[{k}\right]\:{is}\:{not}\:{important}\:,\:\left[\pi{ax}_{\mathrm{2}} =\pi{a}\frac{\mathrm{15}}{\mathrm{2}}=\frac{−\mathrm{3}\pi}{\mathrm{2}}\right]\: \\ $$$${is}\:{important},\:{im}\:{say}\:\left[\pi{ax}=\frac{\pi}{\mathrm{2}}+{k}\pi\right]\:{so}\: \\ $$$${k}=−\mathrm{2}\:{when}\:\left[\pi{ax}_{\mathrm{2}} =\frac{−\mathrm{3}\pi}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}+\left(−\mathrm{2}\right)\pi\right]\: \\ $$
Commented by mnjuly1970 last updated on 14/Dec/22
mamnoon jenabe mahdipoor     ali bood
$${mamnoon}\:{jenabe}\:{mahdipoor}\: \\ $$$$\:\:{ali}\:{bood} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *