Menu Close

Question-182874




Question Number 182874 by peter frank last updated on 15/Dec/22
Answered by TheSupreme last updated on 16/Dec/22
V=vcos(θ)x^→ +(vsin(θ)−gt)y^→   S=vcos(θ)tx^→ +(vsin(θ)t−(1/2)gt^2 )  eq of plane  y=tan(α)x    if particle hits horizzontaly  vsin(θ)−gt=0  t=((vsin(θ))/g)  S^∗ =(v^2 /g)sin(θ)cos(θ)x^→ +(1/2)((v^2 sin^2 (θ))/g)y^→   y=tan(α)x  (1/2)((v^2 sin^2 (θ))/g)=(v^2 /g)sin(θ)cos(θ)tan(α)  (1/2)tan(θ)=tan(α)  tan(θ)=2tan(α)  d=(√(1+tan^2 (α)))x=(x/(cos(α)))=((v^2 sin(θ)cos(ϑ))/(gcos(α)))  ...  tan^2 (θ)=4tan^2 (α)→(1/(cos^2 (θ)))=1+4tan^2 (α)  cos^2 (θ)=(1/(1+4tan^2 (α)))  sin^2 (θ)=((4tan^2 (α))/(1+4tan^2 (α)))  ...  d=(v^2 /g)((2tan(α))/(1+4tan^2 (α)))(1/(cos(α)))
V=vcos(θ)x+(vsin(θ)gt)yS=vcos(θ)tx+(vsin(θ)t12gt2)eqofplaney=tan(α)xifparticlehitshorizzontalyvsin(θ)gt=0t=vsin(θ)gS=v2gsin(θ)cos(θ)x+12v2sin2(θ)gyy=tan(α)x12v2sin2(θ)g=v2gsin(θ)cos(θ)tan(α)12tan(θ)=tan(α)tan(θ)=2tan(α)d=1+tan2(α)x=xcos(α)=v2sin(θ)cos(ϑ)gcos(α)tan2(θ)=4tan2(α)1cos2(θ)=1+4tan2(α)cos2(θ)=11+4tan2(α)sin2(θ)=4tan2(α)1+4tan2(α)d=v2g2tan(α)1+4tan2(α)1cos(α)
Commented by peter frank last updated on 17/Dec/22
thank you
thankyou
Commented by peter frank last updated on 31/Dec/22
diagram please?  where this came from  ↓↓↓↓  d=(√(1+tan^2 (α)))x=(x/(cos(α)))=((v^2 sin(θ)cos(ϑ))/(gcos(α)))
diagramplease?wherethiscamefrom↓↓↓↓d=1+tan2(α)x=xcos(α)=v2sin(θ)cos(ϑ)gcos(α)

Leave a Reply

Your email address will not be published. Required fields are marked *