Menu Close

Question-182896




Question Number 182896 by sciencestudent last updated on 16/Dec/22
Commented by JDamian last updated on 16/Dec/22
bigger than what?
Answered by mr W last updated on 17/Dec/22
say ∠B=20°  case 1:  sin ∠A=((sin 20°)/3)  ⇒∠A=sin^(−1) (((sin 20°)/3))≈6.5°  case 2:  sin (180°−20°−A)=3 sin A  tan A=(( sin 20°)/(3−cos 20°))  ⇒A=tan^(−1) ((( sin 20°)/(3−cos 20°)))≈9.4°
$${say}\:\angle{B}=\mathrm{20}° \\ $$$$\underline{{case}\:\mathrm{1}:} \\ $$$$\mathrm{sin}\:\angle{A}=\frac{\mathrm{sin}\:\mathrm{20}°}{\mathrm{3}} \\ $$$$\Rightarrow\angle{A}=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\mathrm{20}°}{\mathrm{3}}\right)\approx\mathrm{6}.\mathrm{5}° \\ $$$$\underline{{case}\:\mathrm{2}:} \\ $$$$\mathrm{sin}\:\left(\mathrm{180}°−\mathrm{20}°−{A}\right)=\mathrm{3}\:\mathrm{sin}\:{A} \\ $$$$\mathrm{tan}\:{A}=\frac{\:\mathrm{sin}\:\mathrm{20}°}{\mathrm{3}−\mathrm{cos}\:\mathrm{20}°} \\ $$$$\Rightarrow{A}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\:\mathrm{sin}\:\mathrm{20}°}{\mathrm{3}−\mathrm{cos}\:\mathrm{20}°}\right)\approx\mathrm{9}.\mathrm{4}° \\ $$
Commented by mr W last updated on 17/Dec/22
Commented by sciencestudent last updated on 18/Dec/22
thanks sir!
$${thanks}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *