Question Number 182978 by TUN last updated on 18/Dec/22
Answered by dumitrel last updated on 18/Dec/22
$$ \\ $$
Commented by dumitrel last updated on 18/Dec/22
Answered by cortano1 last updated on 18/Dec/22
$$\:{L}=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{n}^{\mathrm{2}} +{n}}\:.\sqrt[{\mathrm{3}}]{{n}^{\mathrm{3}} −{n}^{\mathrm{2}} }−{n}^{\mathrm{2}} \:\right) \\ $$$$\:{L}=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}^{\mathrm{2}} \:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\:.\sqrt[{\mathrm{3}}]{\mathrm{1}−\frac{\mathrm{1}}{{n}}}−{n}^{\mathrm{2}} \\ $$$$\:\left[\:{let}\:\frac{\mathrm{1}}{{n}}\:=\:{x}\:\right] \\ $$$$\:{L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+{x}}\:.\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}}−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{6}}]{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }\:.\sqrt[{\mathrm{6}}]{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{6}}]{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\sqrt[{\mathrm{6}}]{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{4}} \right)}−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{6}}]{\mathrm{1}+{x}^{\mathrm{5}} +{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}}−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\left(\frac{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}}{\mathrm{6}}\:\right)−\mathrm{1}}{{x}^{\mathrm{2}} }=\:\infty \\ $$