Menu Close

Question-183165




Question Number 183165 by universe last updated on 21/Dec/22
Answered by mr W last updated on 22/Dec/22
Commented by mr W last updated on 21/Dec/22
r=a cos θ  dr=−a sin θ dθ  dA=−2θrdr=2a^2 θ cos θ sin θdθ=a^2 θ sin 2θ dθ  z=(√(a^2 −r^2 ))=(√(a^2 (1−cos^2  θ)))=a sin θ  dV=2zdA=2a^3 θ sin 2θ sin θ dθ  V=2a^3 ∫_0 ^(π/2) θ sin 2θ sin θ dθ  V=2a^3 ×((3π−4)/9)  ⇒V=((2(3π−4)a^3 )/9)≈1.2055a^3
r=acosθdr=asinθdθdA=2θrdr=2a2θcosθsinθdθ=a2θsin2θdθz=a2r2=a2(1cos2θ)=asinθdV=2zdA=2a3θsin2θsinθdθV=2a30π2θsin2θsinθdθV=2a3×3π49V=2(3π4)a391.2055a3
Commented by universe last updated on 22/Dec/22
thanks sir
thankssir
Commented by mr W last updated on 22/Dec/22
if the radius of the sphere is R>a,  and let (a/R)=λ<1,  then we have  z=(√(R^2 −r^2 ))=R(√(1−λ^2 cos^2  θ))  dA=λ^2 R^2 θ sin 2θ dθ  dV=2zdA=2λ^2 R^3 θ sin 2θ (√(1−λ^2  cos^2  θ)) dθ  V=2λ^2 R^3 ∫_0 ^(π/2) θ sin 2θ (√(1−λ^2  cos^2  θ)) dθ  this integral can not be exactly solved.
iftheradiusofthesphereisR>a,andletaR=λ<1,thenwehavez=R2r2=R1λ2cos2θdA=λ2R2θsin2θdθdV=2zdA=2λ2R3θsin2θ1λ2cos2θdθV=2λ2R30π2θsin2θ1λ2cos2θdθthisintegralcannotbeexactlysolved.

Leave a Reply

Your email address will not be published. Required fields are marked *