Menu Close

Question-183382




Question Number 183382 by mathlove last updated on 25/Dec/22
Commented by CElcedricjunior last updated on 25/Dec/22
∫((x+1)/(2x^2 +6x+9))dx=(1/4)∫((4x+6)/(2x^2 +6x+9))dx−(1/4)∫((−2)/(2x^2 +6x+9))dx  =(1/4)ln∣2x^2 +6x+9∣−(1/4)∫(dx/((x+(3/2))^2 +(9/4))) t=((2x+3)/3)  =(1/4)ln∣2x^2 +6x+9∣−(1/6)arctan(((2x+3)/3))+c
$$\int\frac{\boldsymbol{{x}}+\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{4}\boldsymbol{{x}}+\mathrm{6}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}}−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{−\mathrm{2}}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}}\boldsymbol{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{{ln}}\mid\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}\mid−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dx}}{\left(\boldsymbol{{x}}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{4}}}\:\boldsymbol{{t}}=\frac{\mathrm{2}\boldsymbol{{x}}+\mathrm{3}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{\mathrm{ln}}\mid\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{6}\boldsymbol{{x}}+\mathrm{9}\mid−\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{{arctan}}\left(\frac{\mathrm{2}\boldsymbol{{x}}+\mathrm{3}}{\mathrm{3}}\right)+\boldsymbol{{c}} \\ $$
Commented by Acem last updated on 25/Dec/22
 Salut, vous insistez pour mettre toute votre   solutions en commentaires!
$$\:{Salut},\:{vous}\:{insistez}\:{pour}\:{mettre}\:{toute}\:{votre} \\ $$$$\:{solutions}\:{en}\:{commentaires}! \\ $$
Commented by mr W last updated on 26/Dec/22
To CElcedricjunior sir:  last warning!  When you insist on disobeying the   rules of the forum and ignore the   kind advises of other people, then this   forum is not a suitable place for you,  in other words, you are not welcome  here, and I′ll ask the administrator   to ban you from the forum!  Image you are waiting for the bus  at a bus stop in a queue, then a guy   comes and pushes himself before all  other people in the queue. Your  current behavior is exactly the same  as this guy. So please leave here or  obey the rules here!  if you have special reason for your  doing, please let us know and speak  it out (in French when you like). Just  ignoring other people without saying  any thing is not polite.
$${To}\:\boldsymbol{{CElcedricjunior}}\:{sir}: \\ $$$${last}\:{warning}! \\ $$$${When}\:{you}\:{insist}\:{on}\:{disobeying}\:{the}\: \\ $$$${rules}\:{of}\:{the}\:{forum}\:{and}\:{ignore}\:{the}\: \\ $$$${kind}\:{advises}\:{of}\:{other}\:{people},\:{then}\:{this}\: \\ $$$${forum}\:{is}\:{not}\:{a}\:{suitable}\:{place}\:{for}\:{you}, \\ $$$${in}\:{other}\:{words},\:{you}\:{are}\:{not}\:{welcome} \\ $$$${here},\:{and}\:{I}'{ll}\:{ask}\:{the}\:{administrator}\: \\ $$$${to}\:{ban}\:{you}\:{from}\:{the}\:{forum}! \\ $$$${Image}\:{you}\:{are}\:{waiting}\:{for}\:{the}\:{bus} \\ $$$${at}\:{a}\:{bus}\:{stop}\:{in}\:{a}\:{queue},\:{then}\:{a}\:{guy}\: \\ $$$${comes}\:{and}\:{pushes}\:{himself}\:{before}\:{all} \\ $$$${other}\:{people}\:{in}\:{the}\:{queue}.\:{Your} \\ $$$${current}\:{behavior}\:{is}\:{exactly}\:{the}\:{same} \\ $$$${as}\:{this}\:{guy}.\:{So}\:{please}\:{leave}\:{here}\:{or} \\ $$$${obey}\:{the}\:{rules}\:{here}! \\ $$$${if}\:{you}\:{have}\:{special}\:{reason}\:{for}\:{your} \\ $$$${doing},\:{please}\:{let}\:{us}\:{know}\:{and}\:{speak} \\ $$$${it}\:{out}\:\left({in}\:{French}\:{when}\:{you}\:{like}\right).\:{Just} \\ $$$${ignoring}\:{other}\:{people}\:{without}\:{saying} \\ $$$${any}\:{thing}\:{is}\:{not}\:{polite}. \\ $$
Commented by CElcedricjunior last updated on 26/Dec/22
i′m very sor
$${i}'{m}\:{very}\:{sor} \\ $$
Answered by Acem last updated on 25/Dec/22
I=∫ ((x+1)/(2x^2 +6x+9)) dx= (1/2)∫ ((x+1)/((x+(3/2))^2 +(9/4))) dx   t= x+ (3/2) ... i   I= (1/4) ∫ ((2t)/(t^2 +(9/4))) dt − (1/6) ∫ ((d((2/3) t))/(((2/3) t)^2 + 1))   I= (1/4) ln (x^2 +3x+(9/2)) − (1/6) arctan ((2/3) x +1)  + c
$${I}=\int\:\frac{{x}+\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}\:{dx}=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{x}+\mathrm{1}}{\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{4}}}\:{dx} \\ $$$$\:{t}=\:{x}+\:\frac{\mathrm{3}}{\mathrm{2}}\:…\:{i} \\ $$$$\:{I}=\:\frac{\mathrm{1}}{\mathrm{4}}\:\int\:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{4}}}\:{dt}\:−\:\frac{\mathrm{1}}{\mathrm{6}}\:\int\:\frac{{d}\left(\frac{\mathrm{2}}{\mathrm{3}}\:{t}\right)}{\left(\frac{\mathrm{2}}{\mathrm{3}}\:{t}\right)^{\mathrm{2}} +\:\mathrm{1}} \\ $$$$\:{I}=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\frac{\mathrm{9}}{\mathrm{2}}\right)\:−\:\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{arctan}\:\left(\frac{\mathrm{2}}{\mathrm{3}}\:{x}\:+\mathrm{1}\right)\:\:+\:{c} \\ $$$$ \\ $$
Answered by Tony6400 last updated on 25/Dec/22
I=∫(x/(2x^2 +6x+9))dx+∫(1/(2x^2 +6x+9))dx=A+B  Now A=∫(x/(2x^2 +6x+9))dx=∫(x/(2(x^2 +3x+(9/2))))dx=(1/2)∫(x/(x^2 +3x+((3/2))^2 +(9/2)−((3/2))^2 ))dx  ⇒A=(1/2)∫(x/((x+(3/2))^2 +((3/2))^2 ))dx.Let x+(3/2)=(3/2)tanθ∴x=(3/2)(tanθ−1)  ⇒(dx/dθ)=(3/2)sec^2 θ∴dx=(3/2)sec^2 θdθ  ⇒A=(1/2)∫(((3/2)(tanθ−1))/(((3/2)tanθ)^2 +(9/4))).(3/2)sec^2 θdθ  ∴A=(1/2)∫(((9/4)sec^2 θ(tanθ−1)dθ)/((9/4)(tan^2 θ+1)))=(1/2)∫(tanθ−1)dθ=(1/2)[−ln(cosθ)−θ].From x+(3/2)=(3/2)tanθ⇒tanθ=((2x+3)/3)=1+(2/3)x∴cosθ=(3/( (√((2x+3)^2 +9))))  And θ=arctan(1+(2/3)x)∴A=−(1/2)[ln((3/( (√((2x+3)^2 +9))))+arctan((2/3)x+1)]+C_1   Moreover B=∫(1/(2x^2 +6x+9))dx=(1/2)∫(1/((x+(3/2))^2 +((3/2))^2 ))dx=(1/2).(2/3)arctan(1+(2/3)x)+C_2   ⇒B=((arctan(1+(2/3)x))/3)+C_2   ⇒I=A+B=∫((x+1)/(2x^2 +6x+9))dx=−(1/2)[ln((3/( (√((2x+3)^2 +9)))))+arctan((2/3)x+1)]+((arctan(1+(2/3)x))/3)+K,where K=C_1 +C_2   I=−(1/2)ln((3/( (√((2x+3)^2 +9)))))−((arctan((2/3)x+1))/2)+((arctan(1+(2/3)x))/3)+K=−(1/2)ln((3/( (√((2x+3)^2 +9)))))−((arctan((2/3)x+1))/6)
$${I}=\int\frac{{x}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}{dx}+\int\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}{dx}={A}+{B} \\ $$$${Now}\:{A}=\int\frac{{x}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}{dx}=\int\frac{{x}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\frac{\mathrm{9}}{\mathrm{2}}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{2}}−\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{x}}{\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}.{Let}\:{x}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}{tan}\theta\therefore{x}=\frac{\mathrm{3}}{\mathrm{2}}\left({tan}\theta−\mathrm{1}\right) \\ $$$$\Rightarrow\frac{{dx}}{{d}\theta}=\frac{\mathrm{3}}{\mathrm{2}}{sec}^{\mathrm{2}} \theta\therefore{dx}=\frac{\mathrm{3}}{\mathrm{2}}{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\frac{\mathrm{3}}{\mathrm{2}}\left({tan}\theta−\mathrm{1}\right)}{\left(\frac{\mathrm{3}}{\mathrm{2}}{tan}\theta\right)^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{4}}}.\frac{\mathrm{3}}{\mathrm{2}}{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$\therefore{A}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\frac{\mathrm{9}}{\mathrm{4}}{sec}^{\mathrm{2}} \theta\left({tan}\theta−\mathrm{1}\right){d}\theta}{\frac{\mathrm{9}}{\mathrm{4}}\left({tan}^{\mathrm{2}} \theta+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\int\left({tan}\theta−\mathrm{1}\right){d}\theta=\frac{\mathrm{1}}{\mathrm{2}}\left[−{ln}\left({cos}\theta\right)−\theta\right].{From}\:{x}+\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}{tan}\theta\Rightarrow{tan}\theta=\frac{\mathrm{2}{x}+\mathrm{3}}{\mathrm{3}}=\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\therefore{cos}\theta=\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{9}}} \\ $$$${And}\:\theta={arctan}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\right)\therefore{A}=−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{9}}}+{arctan}\left(\frac{\mathrm{2}}{\mathrm{3}}{x}+\mathrm{1}\right)\right]+{C}_{\mathrm{1}} \right. \\ $$$${Moreover}\:{B}=\int\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{2}}{\mathrm{3}}{arctan}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\right)+{C}_{\mathrm{2}} \\ $$$$\Rightarrow{B}=\frac{{arctan}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\right)}{\mathrm{3}}+{C}_{\mathrm{2}} \\ $$$$\Rightarrow{I}={A}+{B}=\int\frac{{x}+\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{9}}}\right)+{arctan}\left(\frac{\mathrm{2}}{\mathrm{3}}{x}+\mathrm{1}\right)\right]+\frac{{arctan}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\right)}{\mathrm{3}}+{K},{where}\:{K}={C}_{\mathrm{1}} +{C}_{\mathrm{2}} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{9}}}\right)−\frac{{arctan}\left(\frac{\mathrm{2}}{\mathrm{3}}{x}+\mathrm{1}\right)}{\mathrm{2}}+\frac{{arctan}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{3}}{x}\right)}{\mathrm{3}}+{K}=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{9}}}\right)−\frac{{arctan}\left(\frac{\mathrm{2}}{\mathrm{3}}{x}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *