Menu Close

Question-183737




Question Number 183737 by Michaelfaraday last updated on 29/Dec/22
Answered by Frix last updated on 29/Dec/22
mod (2222^(6k) ; 7) =1  mod (2222^(6k+1) ; 7) =3  mod (2222^(6k+2) ; 7) =2  mod (2222^(6k+3) ; 7) =6  mod (2222^(6k+4) ; 7) =4  mod (2222^(6k+5) ; 7) =5    mod (5555^(6k) ; 7) =1  mod (5555^(6k+1) ; 7) =4  mod (5555^(6k+2) ; 7) =2  mod (5555^(6k+3) ; 7) =1  mod (5555^(6k+4) ; 7) =4  mod (5555^(6k+5) ; 7) =2    5555=6k+5  2222=6k+2    ⇒  2222^(5555) =2222^(6k+5)  ⇒ mod (2222^(5555) ; 7) =5  5555^(2222) =5555^(6k+2)  ⇒ mod (5555^(2222) ; 7) =2  5+2=7
mod(22226k;7)=1mod(22226k+1;7)=3mod(22226k+2;7)=2mod(22226k+3;7)=6mod(22226k+4;7)=4mod(22226k+5;7)=5mod(55556k;7)=1mod(55556k+1;7)=4mod(55556k+2;7)=2mod(55556k+3;7)=1mod(55556k+4;7)=4mod(55556k+5;7)=25555=6k+52222=6k+222225555=22226k+5mod(22225555;7)=555552222=55556k+2mod(55552222;7)=25+2=7
Answered by mr W last updated on 29/Dec/22
2222^(5555) +5555^(2222)  mod 7  =(317×7+3)^(5555) +(793×7+4)^(2222)  mod 7  =3^(5555) +4^(2222)  mod 7  =(34×7+5)^(1111) +(2×7+2)^(1111)   mod 7  =5^(1111) +2^(1111)   mod 7  =(7−2)^(1111) +2^(1111)   mod 7  =−2^(1111) +2^(1111)   mod 7  =0
22225555+55552222mod7=(317×7+3)5555+(793×7+4)2222mod7=35555+42222mod7=(34×7+5)1111+(2×7+2)1111mod7=51111+21111mod7=(72)1111+21111mod7=21111+21111mod7=0
Commented by Michaelfaraday last updated on 29/Dec/22
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *