Question-183737 Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 183737 by Michaelfaraday last updated on 29/Dec/22 Answered by Frix last updated on 29/Dec/22 mod(22226k;7)=1mod(22226k+1;7)=3mod(22226k+2;7)=2mod(22226k+3;7)=6mod(22226k+4;7)=4mod(22226k+5;7)=5mod(55556k;7)=1mod(55556k+1;7)=4mod(55556k+2;7)=2mod(55556k+3;7)=1mod(55556k+4;7)=4mod(55556k+5;7)=25555=6k+52222=6k+2⇒22225555=22226k+5⇒mod(22225555;7)=555552222=55556k+2⇒mod(55552222;7)=25+2=7 Answered by mr W last updated on 29/Dec/22 22225555+55552222mod7=(317×7+3)5555+(793×7+4)2222mod7=35555+42222mod7=(34×7+5)1111+(2×7+2)1111mod7=51111+21111mod7=(7−2)1111+21111mod7=−21111+21111mod7=0 Commented by Michaelfaraday last updated on 29/Dec/22 thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-4-1-x-2-x-4-1-dx-Next Next post: study-the-sequence-u-0-1-and-u-n-1-1-1-u-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.