Menu Close

Question-183777




Question Number 183777 by Michaelfaraday last updated on 30/Dec/22
Commented by Frix last updated on 30/Dec/22
k=2(3)^(1/3)
$${k}=\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$
Answered by HeferH last updated on 30/Dec/22
24^(1 − (1/k))  = 3   ((24)/(24^(1/k) )) = 3   24 = 3∙24^(1/k)    8 = 24^(1/k)    2^(3k) = 24   2^k = 2(3)^(1/3)
$$\mathrm{24}^{\mathrm{1}\:−\:\frac{\mathrm{1}}{{k}}} \:=\:\mathrm{3} \\ $$$$\:\frac{\mathrm{24}}{\mathrm{24}^{\frac{\mathrm{1}}{{k}}} }\:=\:\mathrm{3} \\ $$$$\:\mathrm{24}\:=\:\mathrm{3}\centerdot\mathrm{24}^{\frac{\mathrm{1}}{{k}}} \\ $$$$\:\mathrm{8}\:=\:\mathrm{24}^{\frac{\mathrm{1}}{{k}}} \\ $$$$\:\mathrm{2}^{\mathrm{3}{k}} =\:\mathrm{24} \\ $$$$\:\mathrm{2}^{{k}} =\:\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
thanks sir
$${thanks}\:{sir} \\ $$
Answered by cortano1 last updated on 30/Dec/22
 1−(1/k) = log _(24) (3)  ⇒(1/k) = 1−log _(24) (3)=log _(24) (8)  ⇒k=log _8 (24)=(1/3){3+log _2 3}  ∴ 2^k  = 2^(1+log _2 (((3)^(1/3) )) = 2.(3)^(1/3)
$$\:\mathrm{1}−\frac{\mathrm{1}}{{k}}\:=\:\mathrm{log}\:_{\mathrm{24}} \left(\mathrm{3}\right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{k}}\:=\:\mathrm{1}−\mathrm{log}\:_{\mathrm{24}} \left(\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{24}} \left(\mathrm{8}\right) \\ $$$$\Rightarrow{k}=\mathrm{log}\:_{\mathrm{8}} \left(\mathrm{24}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left\{\mathrm{3}+\mathrm{log}\:_{\mathrm{2}} \mathrm{3}\right\} \\ $$$$\therefore\:\mathrm{2}^{{k}} \:=\:\mathrm{2}^{\mathrm{1}+\mathrm{log}\:_{\mathrm{2}} \left(\left(\sqrt[{\mathrm{3}}]{\mathrm{3}}\right)\right.} =\:\mathrm{2}.\sqrt[{\mathrm{3}}]{\mathrm{3}}\: \\ $$$$ \\ $$$$ \\ $$
Commented by Michaelfaraday last updated on 30/Dec/22
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *