Menu Close

Question-183846




Question Number 183846 by Michaelfaraday last updated on 30/Dec/22
Answered by MJS_new last updated on 31/Dec/22
1. x=0 ⇒ (√(x−(√x)))=0  2. x>0  t=(√(x−(√x)))≥0 ⇒ x=(((1±(√(4t^2 +1)))^2 )/4)  insert in the given equation to get  t=7
$$\mathrm{1}.\:{x}=\mathrm{0}\:\Rightarrow\:\sqrt{{x}−\sqrt{{x}}}=\mathrm{0} \\ $$$$\mathrm{2}.\:{x}>\mathrm{0} \\ $$$${t}=\sqrt{{x}−\sqrt{{x}}}\geqslant\mathrm{0}\:\Rightarrow\:{x}=\frac{\left(\mathrm{1}\pm\sqrt{\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{insert}\:\mathrm{in}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{get} \\ $$$${t}=\mathrm{7} \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
okay thank but please give more detail  on it.
$${okay}\:{thank}\:{but}\:{please}\:{give}\:{more}\:{detail} \\ $$$${on}\:{it}. \\ $$
Commented by MJS_new last updated on 31/Dec/22
I give the path you do the writing work. it′s  easy...
$$\mathrm{I}\:\mathrm{give}\:\mathrm{the}\:\mathrm{path}\:\mathrm{you}\:\mathrm{do}\:\mathrm{the}\:\mathrm{writing}\:\mathrm{work}.\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{easy}… \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
okay sir
$${okay}\:{sir} \\ $$
Answered by mr W last updated on 31/Dec/22
x^2 −50x=49(√x)  let u=(√x) ≥0  u^4 −50u^2 =49u  u=0:  ⇒(√(x−(√x)))=(√(u^2 −u))=0 ✓  u≠0:  ⇒u^3 −50u−49=0  ⇒u^3 +u^2 −u^2 −u−49u−49=0  ⇒(u+1)(u^2 −u−49)=0  ⇒u^2 −u=49   ⇒(√(x−(√x)))=(√(u^2 −u))=(√(49))=7 ✓
$${x}^{\mathrm{2}} −\mathrm{50}{x}=\mathrm{49}\sqrt{{x}} \\ $$$${let}\:{u}=\sqrt{{x}}\:\geqslant\mathrm{0} \\ $$$${u}^{\mathrm{4}} −\mathrm{50}{u}^{\mathrm{2}} =\mathrm{49}{u} \\ $$$${u}=\mathrm{0}: \\ $$$$\Rightarrow\sqrt{{x}−\sqrt{{x}}}=\sqrt{{u}^{\mathrm{2}} −{u}}=\mathrm{0}\:\checkmark \\ $$$${u}\neq\mathrm{0}: \\ $$$$\Rightarrow{u}^{\mathrm{3}} −\mathrm{50}{u}−\mathrm{49}=\mathrm{0} \\ $$$$\Rightarrow{u}^{\mathrm{3}} +{u}^{\mathrm{2}} −{u}^{\mathrm{2}} −{u}−\mathrm{49}{u}−\mathrm{49}=\mathrm{0} \\ $$$$\Rightarrow\left({u}+\mathrm{1}\right)\left({u}^{\mathrm{2}} −{u}−\mathrm{49}\right)=\mathrm{0} \\ $$$$\Rightarrow{u}^{\mathrm{2}} −{u}=\mathrm{49}\: \\ $$$$\Rightarrow\sqrt{{x}−\sqrt{{x}}}=\sqrt{{u}^{\mathrm{2}} −{u}}=\sqrt{\mathrm{49}}=\mathrm{7}\:\checkmark \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
thanks sir
$${thanks}\:{sir} \\ $$
Answered by manxsol last updated on 31/Dec/22
(√(x−(√x))) =(√((x^2 −x)/(x+(√x))))=7  x^2 −x=49x+49(√x)=49(x+(√x))  ((x^2 −x)/(x+(√x)))=49
$$\sqrt{{x}−\sqrt{{x}}}\:=\sqrt{\frac{{x}^{\mathrm{2}} −{x}}{{x}+\sqrt{{x}}}}=\mathrm{7} \\ $$$${x}^{\mathrm{2}} −{x}=\mathrm{49}{x}+\mathrm{49}\sqrt{{x}}=\mathrm{49}\left({x}+\sqrt{{x}}\right) \\ $$$$\frac{{x}^{\mathrm{2}} −{x}}{{x}+\sqrt{{x}}}=\mathrm{49} \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
thanks sir
$${thanks}\:{sir} \\ $$
Answered by CElcedricjunior last updated on 31/Dec/22
x^2 −50x−49(√x)=0  posons t=(√x)  =>t^4 −50t^2 −49t=0  =>t=0ou  t^3 −50t−49=0  (t+1)(t^2 −t−49)=0  t=−1 ou t^2 −t−49=0  𝚫=1+196=197  t=0 ou t=−1 ou t=((1∓(√(197)))/2)  t=(√x)=>x=(((1+(√(197)))/2))^2   =>  (√(x−(√x)))=(√((((1+(√(197)))/2))^2 −((1+(√(197)))/2)))                    =(√((198−2+2(√(197))−2(√(197)))/4))                  =(√((196)/4))=(√(49))=7  =>(√(x−(√x)))=7  ========================  ............le celebre cedric junior...........  =====================      (
$$\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{50}\boldsymbol{{x}}−\mathrm{49}\sqrt{\boldsymbol{{x}}}=\mathrm{0} \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{t}}=\sqrt{\boldsymbol{{x}}} \\ $$$$=>\boldsymbol{{t}}^{\mathrm{4}} −\mathrm{50}\boldsymbol{{t}}^{\mathrm{2}} −\mathrm{49}\boldsymbol{{t}}=\mathrm{0} \\ $$$$=>\boldsymbol{{t}}=\mathrm{0}\boldsymbol{{ou}} \\ $$$$\boldsymbol{{t}}^{\mathrm{3}} −\mathrm{50}\boldsymbol{{t}}−\mathrm{49}=\mathrm{0} \\ $$$$\left(\boldsymbol{{t}}+\mathrm{1}\right)\left(\boldsymbol{{t}}^{\mathrm{2}} −\boldsymbol{{t}}−\mathrm{49}\right)=\mathrm{0} \\ $$$$\boldsymbol{{t}}=−\mathrm{1}\:\boldsymbol{{ou}}\:\boldsymbol{{t}}^{\mathrm{2}} −\boldsymbol{{t}}−\mathrm{49}=\mathrm{0} \\ $$$$\boldsymbol{\Delta}=\mathrm{1}+\mathrm{196}=\mathrm{197} \\ $$$$\boldsymbol{{t}}=\mathrm{0}\:\boldsymbol{{ou}}\:\boldsymbol{{t}}=−\mathrm{1}\:\boldsymbol{{ou}}\:\boldsymbol{{t}}=\frac{\mathrm{1}\mp\sqrt{\mathrm{197}}}{\mathrm{2}} \\ $$$$\boldsymbol{{t}}=\sqrt{\boldsymbol{{x}}}=>\boldsymbol{{x}}=\left(\frac{\mathrm{1}+\sqrt{\mathrm{197}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=> \\ $$$$\sqrt{\boldsymbol{{x}}−\sqrt{\boldsymbol{{x}}}}=\sqrt{\left(\frac{\mathrm{1}+\sqrt{\mathrm{197}}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}+\sqrt{\mathrm{197}}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{198}−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{197}}−\mathrm{2}\sqrt{\mathrm{197}}}{\mathrm{4}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\frac{\mathrm{196}}{\mathrm{4}}}=\sqrt{\mathrm{49}}=\mathrm{7} \\ $$$$=>\sqrt{\boldsymbol{{x}}−\sqrt{\boldsymbol{{x}}}}=\mathrm{7} \\ $$$$======================== \\ $$$$…………{le}\:{celebre}\:{cedric}\:{junior}……….. \\ $$$$===================== \\ $$$$ \\ $$$$ \\ $$$$\left(\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *