Question Number 183863 by Michaelfaraday last updated on 31/Dec/22
Answered by qaz last updated on 31/Dec/22
$$\frac{{d}}{{d}\theta}\left\{\begin{vmatrix}{\begin{pmatrix}{{A}}&{{B}}\\{{C}}&{{D}}\end{pmatrix}}&{\begin{pmatrix}{{E}}&{{F}}\\{{G}}&{{H}}\end{pmatrix}}\end{vmatrix}\right\} \\ $$$$=\frac{{d}}{{d}\theta}\left\{\begin{vmatrix}{{A}}&{{B}}\\{{C}}&{{D}}\end{vmatrix}\centerdot\begin{vmatrix}{{E}}&{{F}}\\{{G}}&{{H}}\end{vmatrix}\right\} \\ $$$$=\begin{vmatrix}{{A}}&{{B}}\\{{C}}&{{D}}\end{vmatrix}^{'} \centerdot\begin{vmatrix}{{E}}&{{F}}\\{{G}}&{{H}}\end{vmatrix}+\begin{vmatrix}{{A}}&{{B}}\\{{C}}&{{D}}\end{vmatrix}\centerdot\begin{vmatrix}{{E}}&{{F}}\\{{G}}&{{H}}\end{vmatrix}^{'} \\ $$$$=\left(\begin{vmatrix}{{A}'}&{{B}'}\\{{C}}&{{D}}\end{vmatrix}+\begin{vmatrix}{{A}}&{{B}}\\{{C}'}&{{D}'}\end{vmatrix}\right)\centerdot\begin{vmatrix}{{E}}&{{F}}\\{{G}}&{{H}}\end{vmatrix}+\begin{vmatrix}{{A}}&{{B}}\\{{C}}&{{D}}\end{vmatrix}\centerdot\left(\begin{vmatrix}{{E}'}&{{F}'}\\{{G}}&{{H}}\end{vmatrix}+\begin{vmatrix}{{E}}&{{F}}\\{{G}'}&{{H}'}\end{vmatrix}\right) \\ $$