Question Number 183864 by Michaelfaraday last updated on 31/Dec/22
Commented by MJS_new last updated on 31/Dec/22
$$\left.{b}\right) \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
$${sir},{show}\:{workings} \\ $$
Answered by mr W last updated on 31/Dec/22
$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{16}+\mathrm{2}\sqrt{\mathrm{55}} \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} =\mathrm{4}\left(\mathrm{119}+\mathrm{16}\sqrt{\mathrm{55}}\right) \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} =\mathrm{16}\left(\mathrm{119}^{\mathrm{2}} +\mathrm{16}^{\mathrm{2}} ×\mathrm{55}+\mathrm{2}×\mathrm{119}×\mathrm{16}\sqrt{\mathrm{55}}\right) \\ $$$${similarly} \\ $$$$\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} =\mathrm{16}\left(\mathrm{119}^{\mathrm{2}} +\mathrm{16}^{\mathrm{2}} ×\mathrm{55}−\mathrm{2}×\mathrm{119}×\mathrm{16}\sqrt{\mathrm{55}}\right) \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} =\mathrm{2}×\mathrm{16}\left(\mathrm{119}^{\mathrm{2}} +\mathrm{16}^{\mathrm{2}} ×\mathrm{55}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{903712}\:\checkmark \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
$${thanks}\:{sir} \\ $$
Answered by Acem last updated on 31/Dec/22
$${k}=\:\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\:\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} =\:\mathrm{11}^{\mathrm{4}} \left[\left(\mathrm{1}+\sqrt{\frac{\mathrm{5}}{\mathrm{11}}}\right)^{\mathrm{8}} +\left(\mathrm{1}−\sqrt{\frac{\mathrm{5}}{\mathrm{11}}}\right)^{\mathrm{8}} \right] \\ $$$$\:\delta=\:\sqrt{\frac{\mathrm{5}}{\mathrm{11}}} \\ $$$$\:{k}=\:\mathrm{11}^{\mathrm{4}} \left[\left(\mathrm{1}+\delta\right)^{\mathrm{8}} +\left(\mathrm{1}−\delta\right)^{\mathrm{8}} \right] \\ $$$$\:\:\:=\:\mathrm{11}^{\mathrm{4}} \left[\mathrm{2}\left(\mathrm{1}+\begin{pmatrix}{\mathrm{8}}\\{\mathrm{2}}\end{pmatrix}\:\delta^{\:\mathrm{2}} +\begin{pmatrix}{\mathrm{8}}\\{\mathrm{4}}\end{pmatrix}\:\delta^{\:\mathrm{4}} +\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{6}}\end{pmatrix}\:\delta^{\:\mathrm{6}} +\delta^{\:\mathrm{8}\:} \right)\right] \\ $$$$\:\:\:=\:\mathrm{11}^{\mathrm{4}} \:\left[\:\mathrm{2}\:\left(\mathrm{1}+\:\frac{\mathrm{5}}{\mathrm{11}}\:\left(\mathrm{28}\:+\:\mathrm{70}\:\frac{\mathrm{5}}{\mathrm{11}}\:+\:\mathrm{28}\:\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{11}^{\mathrm{2}} }\:+\:\frac{\mathrm{5}^{\mathrm{3}} }{\mathrm{11}^{\mathrm{3}} }\:\right)\:\right]\right. \\ $$$$\:\:\:=\:\mathrm{903}\:\mathrm{712} \\ $$$$ \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
$${thanks}\:{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 31/Dec/22
$${a}=\sqrt{\mathrm{11}}\:+\sqrt{\mathrm{5}}\:\:,\:\:{b}=\sqrt{\mathrm{11}}\:−\sqrt{\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:{a}+{b}=\mathrm{2}\sqrt{\mathrm{11}}\:,\:{ab}=\mathrm{11}−\mathrm{5}=\mathrm{6} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{2}\sqrt{\mathrm{11}}\:\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{6}\right)=\mathrm{44}−\mathrm{12}=\mathrm{10} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{32}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{6}\right)^{\mathrm{2}} =\mathrm{952} \\ $$$${a}^{\mathrm{8}} +{b}^{\mathrm{8}} =\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} \right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{4}} {b}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{952}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{6}\right)^{\mathrm{4}} =\mathrm{903712} \\ $$
Commented by Acem last updated on 31/Dec/22
$${Also}\:{cool} \\ $$
Commented by manxsol last updated on 31/Dec/22
$${very}\:{very}\:{good} \\ $$
Commented by Rasheed.Sindhi last updated on 31/Dec/22
$$\mathbb{T}\boldsymbol{\mathrm{han}}\mathbb{X}\:{Acem}\:\&\:{manxsol}\:{sirs}! \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
$${thanks}\:{sir} \\ $$
Answered by manxsol last updated on 31/Dec/22
$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{2}\left(\mathrm{16}\right)=\mathrm{32} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} +\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} +\mathrm{2}\left(\mathrm{11}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{32}^{\mathrm{2}} \\ $$$$\:\:\:\mathrm{2}\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} \left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{2}\left[\sqrt{\mathrm{11}}\:^{\mathrm{2}} +\sqrt{\mathrm{5}\:}\:^{\mathrm{2}} \right]^{\mathrm{2}} =\mathrm{2}\left(\mathrm{11}−\mathrm{5}\right)^{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{4}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{4}} =\mathrm{32}^{\mathrm{2}} −\mathrm{2}×\mathrm{6}^{\mathrm{2}} =\mathrm{952} \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\mathrm{2}\left(\mathrm{11}−\mathrm{5}\right)^{\mathrm{4}} =\mathrm{952}^{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} =\mathrm{952}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{6}\right)^{\mathrm{4}} \\ $$$$\left(\sqrt{\mathrm{11}}+\sqrt{\mathrm{5}}\right)^{\mathrm{8}} +\left(\sqrt{\mathrm{11}}−\sqrt{\mathrm{5}}\right)^{\mathrm{8}} = \\ $$$$\mathrm{952}^{\mathrm{2}} −\mathrm{2}×\mathrm{6}^{\mathrm{4}} \\ $$$$\mathrm{903712}.\mathrm{0} \\ $$$$ \\ $$
Commented by Michaelfaraday last updated on 31/Dec/22
$${thanks}\:{sir} \\ $$