Question Number 184093 by Ib last updated on 02/Jan/23
Answered by manxsol last updated on 03/Jan/23
$$\left(\mathrm{1}+\frac{{t}}{\mathrm{100}}\right)^{\mathrm{10}} =\mathrm{3} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{\mathrm{100}}{{t}}\right)}\right)^{\mathrm{10}} =\mathrm{3} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\left(\frac{\mathrm{100}}{{t}}\right)}\right)^{\mathrm{10}×\frac{\mathrm{10}}{{t}}} =\mathrm{3}^{\frac{\mathrm{10}}{{t}}} \\ $$$${c}=\mathrm{3}^{\frac{\mathrm{10}}{{t}}} \\ $$$$\mathrm{1}{ne}=\mathrm{ln}\left(\mathrm{3}^{\frac{\mathrm{10}}{\mathrm{t}}} \right) \\ $$$$\mathrm{1}=\frac{\mathrm{10}}{\mathrm{t}}\mathrm{ln3} \\ $$$${t}=\mathrm{10}{ln}\mathrm{3} \\ $$$$\mathrm{t}=\mathrm{10}.\mathrm{99} \\ $$$$\mathrm{theory}\:_{} \&\:{calculate} \\ $$$${lim}_{{x}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} =\mathrm{e} \\ $$$$\mathrm{e} \\ $$$$\mathrm{2}.\mathrm{718282} \\ $$$$\mathrm{ln3} \\ $$$$\mathrm{1}.\mathrm{098612} \\ $$$$\mathrm{t}=\mathrm{10}.\mathrm{99} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{10}.\mathrm{99}}{\mathrm{100}}\right)^{\mathrm{10}} \\ $$$$\mathrm{2}.\mathrm{836864}\:\:{no}\:{exacto} \\ $$$${otro}\:{metodo} \\ $$$$\mathrm{10}{ln}\left(\mathrm{1}+{t}\right)={ln}\mathrm{3} \\ $$$$\mathrm{1}+{t}=\left({e}^{{ln}\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{10}}} \\ $$$${t}=\left({e}^{{ln}\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{10}}} −\mathrm{1} \\ $$$${t}=\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{10}}} −\mathrm{1} \\ $$$${t}=\mathrm{0}.\mathrm{116123}=\frac{{x}}{\mathrm{100}} \\ $$$${x}=\mathrm{11}.\mathrm{61} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{11}.\mathrm{61}}{\mathrm{100}}\right)^{\mathrm{10}} \\ $$$$\mathrm{2}.\mathrm{999377}\:\:{ok}\:\:{x}=\mathrm{11}.\mathrm{61} \\ $$$$\:{es}\:{la}\:{solucion} \\ $$$$ \\ $$
Commented by Frix last updated on 03/Jan/23
$$\mathrm{We}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:\mathrm{all}\:\mathrm{this}.\:\mathrm{The}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{is} \\ $$$$\left(\mathrm{1}+\frac{{t}}{\mathrm{100}}\right)^{\mathrm{10}} =\mathrm{3}\:\Leftrightarrow\:\mathrm{1}+\frac{{t}}{\mathrm{100}}=\pm\sqrt[{\mathrm{10}}]{\mathrm{3}}\:\Leftrightarrow\:{t}=\mathrm{100}\left(\pm\sqrt[{\mathrm{10}}]{\mathrm{3}}−\mathrm{1}\right) \\ $$
Commented by manolex last updated on 03/Jan/23
$${true},{is}\:{exact} \\ $$
Commented by manolex last updated on 03/Jan/23
$${t}_{\mathrm{1}} =\mathrm{11}.\mathrm{61}\:\:\:\:\:{t}_{\mathrm{2}} =−\mathrm{211}.\mathrm{61} \\ $$
Answered by manxsol last updated on 02/Jan/23
$$\sqrt{\left(\frac{\mathrm{35}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(−\mathrm{6}\right)^{\mathrm{3}} } \\ $$$$\sqrt{\frac{\mathrm{1225}}{\mathrm{4}}−\mathrm{216}} \\ $$$$\sqrt{\frac{\mathrm{1225}−\mathrm{864}}{\mathrm{4}}} \\ $$$$\sqrt{\frac{\mathrm{361}}{\mathrm{4}}}\:=\frac{\mathrm{19}}{\mathrm{2}} \\ $$$$\:^{\mathrm{3}} \sqrt{−\frac{\mathrm{35}}{\mathrm{2}}−\frac{\mathrm{19}}{\mathrm{2}}}\:+\:^{\mathrm{3}} \sqrt{\frac{−\mathrm{35}}{\mathrm{2}}+\frac{\mathrm{19}}{\mathrm{2}}} \\ $$$$\:^{\mathrm{3}} \sqrt{−\mathrm{27}}+\:^{\mathrm{3}} \sqrt{−\mathrm{8}} \\ $$$$−\mathrm{5}\:{is}\:{solution} \\ $$$$ \\ $$$$ \\ $$