Menu Close

Question-184264




Question Number 184264 by Noorzai last updated on 04/Jan/23
Answered by ARUNG_Brandon_MBU last updated on 04/Jan/23
I(t)=∫_0 ^∞ e^(−tx) ((sinmx)/x)dx ⇒I′(t)=−∫_0 ^∞ e^(−tx) sinmxdx  ⇒I′(t)=−[(e^(−tx) /(t^2 +m^2 ))(−tsinmx−mcosmx)]_0 ^∞                 =−(m/(t^2 +m^2 )) ⇒I(t)=−arctan((t/m))+C  lim_(t→+∞) I(t)=0=−(π/2)+C ⇒C=(π/2)  ⇒I(t)=(π/2)−arctan((t/m))  ⇒∫_0 ^∞ e^x ((sinmx)/x)dx=I(−1)=(π/2)+arctan((1/m))
I(t)=0etxsinmxxdxI(t)=0etxsinmxdxI(t)=[etxt2+m2(tsinmxmcosmx)]0=mt2+m2I(t)=arctan(tm)+Climt+I(t)=0=π2+CC=π2I(t)=π2arctan(tm)0exsinmxxdx=I(1)=π2+arctan(1m)

Leave a Reply

Your email address will not be published. Required fields are marked *