Menu Close

Question-184398




Question Number 184398 by HeferH last updated on 06/Jan/23
Answered by som(math1967) last updated on 06/Jan/23
 ((BD)/(BC))=((sin2φ)/(sin(180−3φ)))=((sin2φ)/(sin3φ))  ((AD)/(BD))=((sin90)/(sin(90−3φ)))=(1/(cos3φ))   BD=ADcos3φ   ((ADcos3φ)/(AD))=((sin2φ)/(sin3φ))   [∵BC=AD]  sin3φcos3φ=sin2φ  2sin3φcos3φ=2sin2φ  sin6φ=2sin2φ  3sin2φ−4sin^3 2φ=2sin2φ  ⇒3−4sin^2 2φ=2   [φ≠0]   sin2φ=(1/2)   2φ=30⇒φ=15
$$\:\frac{{BD}}{{BC}}=\frac{{sin}\mathrm{2}\phi}{{sin}\left(\mathrm{180}−\mathrm{3}\phi\right)}=\frac{{sin}\mathrm{2}\phi}{{sin}\mathrm{3}\phi} \\ $$$$\frac{{AD}}{{BD}}=\frac{{sin}\mathrm{90}}{{sin}\left(\mathrm{90}−\mathrm{3}\phi\right)}=\frac{\mathrm{1}}{{cos}\mathrm{3}\phi} \\ $$$$\:{BD}={ADcos}\mathrm{3}\phi \\ $$$$\:\frac{{ADcos}\mathrm{3}\phi}{{AD}}=\frac{{sin}\mathrm{2}\phi}{{sin}\mathrm{3}\phi}\:\:\:\left[\because{BC}={AD}\right] \\ $$$${sin}\mathrm{3}\phi{cos}\mathrm{3}\phi={sin}\mathrm{2}\phi \\ $$$$\mathrm{2}{sin}\mathrm{3}\phi{cos}\mathrm{3}\phi=\mathrm{2}{sin}\mathrm{2}\phi \\ $$$${sin}\mathrm{6}\phi=\mathrm{2}{sin}\mathrm{2}\phi \\ $$$$\mathrm{3}{sin}\mathrm{2}\phi−\mathrm{4}{sin}^{\mathrm{3}} \mathrm{2}\phi=\mathrm{2}{sin}\mathrm{2}\phi \\ $$$$\Rightarrow\mathrm{3}−\mathrm{4}{sin}^{\mathrm{2}} \mathrm{2}\phi=\mathrm{2}\:\:\:\left[\phi\neq\mathrm{0}\right] \\ $$$$\:{sin}\mathrm{2}\phi=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\mathrm{2}\phi=\mathrm{30}\Rightarrow\phi=\mathrm{15} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *