Menu Close

Question-184477




Question Number 184477 by Shrinava last updated on 07/Jan/23
Commented by JDamian last updated on 07/Jan/23
I don't even understand your question. Would you mind express in math language?
Commented by mr W last updated on 07/Jan/23
when C(n)=core of number n, then  C(21)=18  C(12)=9
$${when}\:{C}\left({n}\right)={core}\:{of}\:{number}\:{n},\:{then} \\ $$$${C}\left(\mathrm{21}\right)=\mathrm{18} \\ $$$${C}\left(\mathrm{12}\right)=\mathrm{9} \\ $$
Answered by Rasheed.Sindhi last updated on 07/Jan/23
•tu^(−)  is 2-digit number.Clearly    u∈{0,1,2,...,9} & t∈{1,2,3,...,9}  •Core of tu^(−)  is either 9 or 18      and  this depends upon values of     u and t as follows:    determinant ((u,(values of t_(for core 9_(/total) ) ),(values of t_(for core 18_(/total) ) )),(0,(1≤t≤9       9),(−                    0)),(1,(−                   0),(1≤t≤9          9)),(2,(t=1               1),(2≤t≤9          8)),(3,(t=1,2           2),(3≤t≤9          7)),(4,(1≤t≤3        3),(4≤t≤9          6)),(5,(1≤t≤4        4),(5≤t≤9          5)),(6,(1≤t≤5        5),(6≤t≤9          4)),(7,(1≤t≤6        6),(7≤t≤9          3)),(8,(1≤t≤7        7),(t=8,9             2)),(9,(1≤t≤8        8        ),(t=9                 1)),(,(TOTAL     45),(                        45)))  Sum of the cores=9×45+18×45                                        =1215
$$\bullet\overline {{tu}}\:{is}\:\mathrm{2}-{digit}\:{number}.{Clearly} \\ $$$$\:\:{u}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},…,\mathrm{9}\right\}\:\&\:{t}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{9}\right\} \\ $$$$\bullet{Core}\:{of}\:\overline {{tu}}\:{is}\:{either}\:\mathrm{9}\:{or}\:\mathrm{18}\: \\ $$$$\:\:\:{and}\:\:{this}\:{depends}\:{upon}\:{values}\:{of} \\ $$$$\:\:\:{u}\:{and}\:{t}\:{as}\:{follows}:\: \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}{{u}}&\hline{\underset{\underset{/{total}} {{for}\:{core}\:\mathrm{9}}} {{values}\:{of}\:{t}}}&\hline{\underset{\underset{/{total}} {{for}\:{core}\:\mathrm{18}}} {{values}\:{of}\:{t}}}\\{\mathrm{0}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\mathrm{9}}&\hline{−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{1}}&\hline{−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{9}}\\{\mathrm{2}}&\hline{{t}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\mathrm{2}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{8}}\\{\mathrm{3}}&\hline{{t}=\mathrm{1},\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}&\hline{\mathrm{3}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{7}}\\{\mathrm{4}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{3}\:\:\:\:\:\:\:\:\mathrm{3}}&\hline{\mathrm{4}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{6}}\\{\mathrm{5}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{4}\:\:\:\:\:\:\:\:\mathrm{4}}&\hline{\mathrm{5}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\mathrm{6}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{5}}&\hline{\mathrm{6}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{4}}\\{\mathrm{7}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{6}\:\:\:\:\:\:\:\:\mathrm{6}}&\hline{\mathrm{7}\leqslant{t}\leqslant\mathrm{9}\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\\{\mathrm{8}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{7}\:\:\:\:\:\:\:\:\mathrm{7}}&\hline{{t}=\mathrm{8},\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{9}}&\hline{\mathrm{1}\leqslant{t}\leqslant\mathrm{8}\:\:\:\:\:\:\:\:\mathrm{8}\:\:\:\:\:\:\:\:}&\hline{{t}=\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{}&\hline{{TOTAL}\:\:\:\:\:\mathrm{45}}&\hline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{45}}\\\hline\end{array} \\ $$$${Sum}\:{of}\:{the}\:{cores}=\mathrm{9}×\mathrm{45}+\mathrm{18}×\mathrm{45} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1215}\:\: \\ $$
Answered by Rasheed.Sindhi last updated on 08/Jan/23
AnOther way:  •tu^(−)  is 2-digit number.Clearly    u∈{0,1,2,...,9} & t∈{1,2,3,...,9}  Observations:  •Number of 2-digit numbers      =99−9=90  •Core of tu^(−)  is either 9 or 18  •All numbers in which  t<u  have     core  9, other numbers(in which     t≥u but u≠0) have core 18  •In case u=0 core of  t0^(−)  is 9      although t>u  • Number of the numbers having      core 9 is 45.^★       So sum of cores is  9 × 45 = 405  • Obviously number of the remaining     numbers(in which t≥u and having     cores 18) is 90−45=45.So the sum     of cores 18×45=810  •Sum of cores of  all 2-digit number     is  therefore  405+810=1215  ^★ The way of counting is given in      my other answer.The better way    of counting  may be suggested    by sir mr W
$$\boldsymbol{\mathrm{AnOther}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\bullet\overline {{tu}}\:{is}\:\mathrm{2}-{digit}\:{number}.{Clearly} \\ $$$$\:\:{u}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},…,\mathrm{9}\right\}\:\&\:{t}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{9}\right\} \\ $$$$\boldsymbol{{Observations}}: \\ $$$$\bullet{Number}\:{of}\:\mathrm{2}-{digit}\:{numbers} \\ $$$$\:\:\:\:=\mathrm{99}−\mathrm{9}=\mathrm{90} \\ $$$$\bullet{Core}\:{of}\:\overline {{tu}}\:{is}\:{either}\:\mathrm{9}\:{or}\:\mathrm{18} \\ $$$$\bullet\boldsymbol{{All}}\:\boldsymbol{{numbers}}\:\boldsymbol{{in}}\:\boldsymbol{{which}}\:\:\boldsymbol{{t}}<\boldsymbol{{u}}\:\:\boldsymbol{{have}} \\ $$$$\:\:\:\boldsymbol{{core}}\:\:\mathrm{9},\:\boldsymbol{{other}}\:\boldsymbol{{numbers}}\left(\boldsymbol{{in}}\:\boldsymbol{{which}}\right. \\ $$$$\left.\:\:\:\boldsymbol{{t}}\geqslant\boldsymbol{{u}}\:\boldsymbol{{but}}\:\boldsymbol{{u}}\neq\mathrm{0}\right)\:\boldsymbol{{have}}\:\boldsymbol{{core}}\:\mathrm{18} \\ $$$$\bullet\boldsymbol{{In}}\:\boldsymbol{{case}}\:\boldsymbol{{u}}=\mathrm{0}\:\boldsymbol{{core}}\:\boldsymbol{{of}}\:\:\overline {\boldsymbol{{t}}\mathrm{0}}\:\boldsymbol{{is}}\:\mathrm{9}\: \\ $$$$\:\:\:\boldsymbol{{although}}\:\boldsymbol{{t}}>\boldsymbol{{u}} \\ $$$$\bullet\:{Number}\:{of}\:{the}\:{numbers}\:{having} \\ $$$$\:\:\:\:{core}\:\mathrm{9}\:{is}\:\mathrm{45}.^{\bigstar} \: \\ $$$$\:\:\:{So}\:{sum}\:{of}\:{cores}\:{is}\:\:\mathrm{9}\:×\:\mathrm{45}\:=\:\mathrm{405} \\ $$$$\bullet\:{Obviously}\:{number}\:{of}\:{the}\:{remaining} \\ $$$$\:\:\:{numbers}\left({in}\:{which}\:{t}\geqslant{u}\:{and}\:{having}\right. \\ $$$$\left.\:\:\:{cores}\:\mathrm{18}\right)\:{is}\:\mathrm{90}−\mathrm{45}=\mathrm{45}.{So}\:{the}\:{sum} \\ $$$$\:\:\:{of}\:{cores}\:\mathrm{18}×\mathrm{45}=\mathrm{810} \\ $$$$\bullet{Sum}\:{of}\:{cores}\:{of}\:\:{all}\:\mathrm{2}-{digit}\:{number} \\ $$$$\:\:\:{is}\:\:{therefore}\:\:\mathrm{405}+\mathrm{810}=\mathrm{1215} \\ $$$$\:^{\bigstar} {The}\:{way}\:{of}\:{counting}\:{is}\:{given}\:{in} \\ $$$$\:\:\:\:{my}\:{other}\:{answer}.\boldsymbol{{The}}\:\boldsymbol{{better}}\:\boldsymbol{{way}} \\ $$$$\:\:\boldsymbol{{of}}\:\boldsymbol{{counting}}\:\:\boldsymbol{{may}}\:\boldsymbol{{be}}\:\boldsymbol{{suggested}} \\ $$$$\:\:\boldsymbol{{by}}\:\boldsymbol{{sir}}\:\boldsymbol{{mr}}\:\boldsymbol{{W}} \\ $$
Commented by mr W last updated on 08/Jan/23
i think you have greatly solved sir.  numbers with t<u have the core  9, while numbers with t≥u have   the core 18^(∗)) .  this is just an observation. to be  mathematically strict, it must be  proved.    ^(∗))  there are exceptions! e.g. the core  of 20 is 9, not 18.
$${i}\:{think}\:{you}\:{have}\:{greatly}\:{solved}\:{sir}. \\ $$$$\boldsymbol{{numbers}}\:\boldsymbol{{with}}\:\boldsymbol{{t}}<\boldsymbol{{u}}\:\boldsymbol{{have}}\:\boldsymbol{{the}}\:\boldsymbol{{core}} \\ $$$$\mathrm{9},\:\boldsymbol{{while}}\:\boldsymbol{{numbers}}\:\boldsymbol{{with}}\:\boldsymbol{{t}}\geqslant\boldsymbol{{u}}\:\boldsymbol{{have}}\: \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{core}}\:\mathrm{18}\:^{\left.\ast\right)} . \\ $$$${this}\:{is}\:{just}\:{an}\:{observation}.\:{to}\:{be} \\ $$$${mathematically}\:{strict},\:{it}\:{must}\:{be} \\ $$$${proved}. \\ $$$$ \\ $$$$\:^{\left.\ast\right)} \:{there}\:{are}\:{exceptions}!\:{e}.{g}.\:{the}\:{core} \\ $$$${of}\:\mathrm{20}\:{is}\:\mathrm{9},\:{not}\:\mathrm{18}. \\ $$
Commented by Rasheed.Sindhi last updated on 08/Jan/23
Grateful sir! I′ve added now the  exception.Pl reread my answer.  As far as the proof is concerned I  know only one way that is to test  the proposition for all numbers(10,  11,12,...99).   determinant (((10),(20),(30),(40),(50),(60),(70),(80),(90)),((11),(21),(31),(41),(51),(61),(71),(81),(91)),((12),(22),(32),(42),(52),(62),(72),(82),(92)),((13),(23),(33),(43),(53),(63),(73),(83),(93)),((14),(24),(34),(44),(54),(64),(74),(84),(94)),((15),(25),(35),(45),(55),(65),(75),(85),(95)),((16),(26),(36),(46),(56),(66),(76),(86),(96)),((17),(27),(37),(47),(57),(67),(77),(87),(97)),((18),(28),(38),(48),(58),(68),(78),(88),(98)),((19),(29),(39),(49),(59),(69),(79),(89),(99)))  Blue numbers have core 9  Red  numbers have core 18
$$\boldsymbol{{Grateful}}\:\boldsymbol{{sir}}!\:{I}'{ve}\:{added}\:{now}\:{the} \\ $$$${exception}.{Pl}\:{reread}\:{my}\:{answer}. \\ $$$${As}\:{far}\:{as}\:{the}\:{proof}\:{is}\:{concerned}\:{I} \\ $$$${know}\:{only}\:{one}\:{way}\:{that}\:{is}\:{to}\:{test} \\ $$$${the}\:{proposition}\:{for}\:{all}\:{numbers}\left(\mathrm{10},\right. \\ $$$$\left.\mathrm{11},\mathrm{12},…\mathrm{99}\right). \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}{\mathrm{10}}&\hline{\mathrm{20}}&\hline{\mathrm{30}}&\hline{\mathrm{40}}&\hline{\mathrm{50}}&\hline{\mathrm{60}}&\hline{\mathrm{70}}&\hline{\mathrm{80}}&\hline{\mathrm{90}}\\{\mathrm{11}}&\hline{\mathrm{21}}&\hline{\mathrm{31}}&\hline{\mathrm{41}}&\hline{\mathrm{51}}&\hline{\mathrm{61}}&\hline{\mathrm{71}}&\hline{\mathrm{81}}&\hline{\mathrm{91}}\\{\mathrm{12}}&\hline{\mathrm{22}}&\hline{\mathrm{32}}&\hline{\mathrm{42}}&\hline{\mathrm{52}}&\hline{\mathrm{62}}&\hline{\mathrm{72}}&\hline{\mathrm{82}}&\hline{\mathrm{92}}\\{\mathrm{13}}&\hline{\mathrm{23}}&\hline{\mathrm{33}}&\hline{\mathrm{43}}&\hline{\mathrm{53}}&\hline{\mathrm{63}}&\hline{\mathrm{73}}&\hline{\mathrm{83}}&\hline{\mathrm{93}}\\{\mathrm{14}}&\hline{\mathrm{24}}&\hline{\mathrm{34}}&\hline{\mathrm{44}}&\hline{\mathrm{54}}&\hline{\mathrm{64}}&\hline{\mathrm{74}}&\hline{\mathrm{84}}&\hline{\mathrm{94}}\\{\mathrm{15}}&\hline{\mathrm{25}}&\hline{\mathrm{35}}&\hline{\mathrm{45}}&\hline{\mathrm{55}}&\hline{\mathrm{65}}&\hline{\mathrm{75}}&\hline{\mathrm{85}}&\hline{\mathrm{95}}\\{\mathrm{16}}&\hline{\mathrm{26}}&\hline{\mathrm{36}}&\hline{\mathrm{46}}&\hline{\mathrm{56}}&\hline{\mathrm{66}}&\hline{\mathrm{76}}&\hline{\mathrm{86}}&\hline{\mathrm{96}}\\{\mathrm{17}}&\hline{\mathrm{27}}&\hline{\mathrm{37}}&\hline{\mathrm{47}}&\hline{\mathrm{57}}&\hline{\mathrm{67}}&\hline{\mathrm{77}}&\hline{\mathrm{87}}&\hline{\mathrm{97}}\\{\mathrm{18}}&\hline{\mathrm{28}}&\hline{\mathrm{38}}&\hline{\mathrm{48}}&\hline{\mathrm{58}}&\hline{\mathrm{68}}&\hline{\mathrm{78}}&\hline{\mathrm{88}}&\hline{\mathrm{98}}\\{\mathrm{19}}&\hline{\mathrm{29}}&\hline{\mathrm{39}}&\hline{\mathrm{49}}&\hline{\mathrm{59}}&\hline{\mathrm{69}}&\hline{\mathrm{79}}&\hline{\mathrm{89}}&\hline{\mathrm{99}}\\\hline\end{array} \\ $$$$\mathcal{B}{lue}\:{numbers}\:{have}\:{core}\:\mathrm{9} \\ $$$${Red}\:\:{numbers}\:{have}\:{core}\:\mathrm{18} \\ $$
Commented by mr W last updated on 08/Jan/23
your solution is great!  as for the proof, see my attempt.
$${your}\:{solution}\:{is}\:{great}! \\ $$$${as}\:{for}\:{the}\:{proof},\:{see}\:{my}\:{attempt}. \\ $$
Answered by mr W last updated on 08/Jan/23
there are 3 typs of 2−digit numbers  typ 1: like 10, 20  9 numbers, core of each is 9  typ 2: like 11, 22  9 numbers, core of each is 18  typ 3: like 12, 23 or 21, 32  9×8=72 such numbers. one half of them,  like 12, have the core 9, the other half,  like 21, have the core 18.    the sum of the cores of all 2−digit  numbers:  9×8+9×18+36×9+36×18=1215
$${there}\:{are}\:\mathrm{3}\:{typs}\:{of}\:\mathrm{2}−{digit}\:{numbers} \\ $$$${typ}\:\mathrm{1}:\:{like}\:\mathrm{10},\:\mathrm{20} \\ $$$$\mathrm{9}\:{numbers},\:{core}\:{of}\:{each}\:{is}\:\mathrm{9} \\ $$$${typ}\:\mathrm{2}:\:{like}\:\mathrm{11},\:\mathrm{22} \\ $$$$\mathrm{9}\:{numbers},\:{core}\:{of}\:{each}\:{is}\:\mathrm{18} \\ $$$${typ}\:\mathrm{3}:\:{like}\:\mathrm{12},\:\mathrm{23}\:{or}\:\mathrm{21},\:\mathrm{32} \\ $$$$\mathrm{9}×\mathrm{8}=\mathrm{72}\:{such}\:{numbers}.\:{one}\:{half}\:{of}\:{them}, \\ $$$${like}\:\mathrm{12},\:{have}\:{the}\:{core}\:\mathrm{9},\:{the}\:{other}\:{half}, \\ $$$${like}\:\mathrm{21},\:{have}\:{the}\:{core}\:\mathrm{18}. \\ $$$$ \\ $$$${the}\:{sum}\:{of}\:{the}\:{cores}\:{of}\:{all}\:\mathrm{2}−{digit} \\ $$$${numbers}: \\ $$$$\mathrm{9}×\mathrm{8}+\mathrm{9}×\mathrm{18}+\mathrm{36}×\mathrm{9}+\mathrm{36}×\mathrm{18}=\mathrm{1215} \\ $$
Commented by mr W last updated on 09/Jan/23
about the core of  2−digit numbers  the core of a 2−digit number is  defined as the sum of digits of the  9 times of this number.   example n=25  9n=9×25=225  2+2+5=9  that means the core of 25 is 9.    case 1: numbers with digit zero  n=a0  9n=10n−n=a00−a0  the first digit of is a−1, the  second digit is 10−a, the third is 0.  sum of all digits is a−1+10−a+0=9  that means the core of a0 is always 9.    case 2: numbers without digit zero  n=ab  9n=10n−n=ab0−ab  the third digit is 10−b  the second digit is b−1−a if b−1≥a                                     or 10+b−1−a if b−1<a  the first digit is a if b−1≥a                                 or a−1 if b−1<a  sum of all digits is           10−b+b−1−a+a=9 if b−1≥a    or 10−b+10+b−1−a+a−1=18 if b−1<a  that means   the core of ab is  { ((9 if a<b)),((18 if a≥b)) :}
$$\underline{{about}\:{the}\:{core}\:{of}\:\:\mathrm{2}−{digit}\:{numbers}} \\ $$$${the}\:{core}\:{of}\:{a}\:\mathrm{2}−{digit}\:{number}\:{is} \\ $$$${defined}\:{as}\:{the}\:{sum}\:{of}\:{digits}\:{of}\:{the} \\ $$$$\mathrm{9}\:{times}\:{of}\:{this}\:{number}.\: \\ $$$${example}\:{n}=\mathrm{25} \\ $$$$\mathrm{9}{n}=\mathrm{9}×\mathrm{25}=\mathrm{225} \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{5}=\mathrm{9} \\ $$$${that}\:{means}\:{the}\:{core}\:{of}\:\mathrm{25}\:{is}\:\mathrm{9}. \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{numbers}\:{with}\:{digit}\:{zero} \\ $$$${n}=\underline{{a}\mathrm{0}} \\ $$$$\mathrm{9}{n}=\mathrm{10}{n}−{n}={a}\mathrm{00}−{a}\mathrm{0} \\ $$$${the}\:{first}\:{digit}\:{of}\:{is}\:{a}−\mathrm{1},\:{the} \\ $$$${second}\:{digit}\:{is}\:\mathrm{10}−{a},\:{the}\:{third}\:{is}\:\mathrm{0}. \\ $$$${sum}\:{of}\:{all}\:{digits}\:{is}\:{a}−\mathrm{1}+\mathrm{10}−{a}+\mathrm{0}=\mathrm{9} \\ $$$${that}\:{means}\:{the}\:{core}\:{of}\:\underline{{a}\mathrm{0}}\:{is}\:{always}\:\mathrm{9}. \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{numbers}\:{without}\:{digit}\:{zero} \\ $$$${n}=\underline{{ab}} \\ $$$$\mathrm{9}{n}=\mathrm{10}{n}−{n}={ab}\mathrm{0}−{ab} \\ $$$${the}\:{third}\:{digit}\:{is}\:\mathrm{10}−{b} \\ $$$${the}\:{second}\:{digit}\:{is}\:{b}−\mathrm{1}−{a}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\mathrm{10}+{b}−\mathrm{1}−{a}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${the}\:{first}\:{digit}\:{is}\:{a}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:{a}−\mathrm{1}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${sum}\:{of}\:{all}\:{digits}\:{is}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{10}−{b}+{b}−\mathrm{1}−{a}+{a}=\mathrm{9}\:{if}\:{b}−\mathrm{1}\geqslant{a} \\ $$$$\:\:{or}\:\mathrm{10}−{b}+\mathrm{10}+{b}−\mathrm{1}−{a}+{a}−\mathrm{1}=\mathrm{18}\:{if}\:{b}−\mathrm{1}<{a} \\ $$$${that}\:{means}\: \\ $$$${the}\:{core}\:{of}\:\underline{{ab}}\:{is}\:\begin{cases}{\mathrm{9}\:{if}\:{a}<{b}}\\{\mathrm{18}\:{if}\:{a}\geqslant{b}}\end{cases} \\ $$
Commented by mr W last updated on 09/Jan/23
thanks!
$${thanks}! \\ $$
Commented by Rasheed.Sindhi last updated on 10/Jan/23
Xcellent Sir! Thanks a lot.
$$\mathcal{X}{cellent}\:\mathcal{S}{ir}!\:\mathcal{T}\boldsymbol{{hanks}}\:\boldsymbol{{a}}\:\boldsymbol{{lot}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *