Menu Close

Question-184481




Question Number 184481 by yaslm last updated on 07/Jan/23
Answered by mahdipoor last updated on 07/Jan/23
i=e^0 (cos(π/2)+isin(π/2))=e^((π/2)i) ⇒  Z_1 =(i^((100)/i) )^(0.5) =(e^(((π/2)i)(((100)/i))) )^(0.5) =(e^((100π)/2) )^(0.5) =(e^(50π) )^(0.5)   Z_1 =±e^(25π)        Z_2 =e^(((π(√3))/2)i) =isin(((π(√3))/2))  Z_3 =e^(((9π)/4)i) =isin(((9π)/4))
i=e0(cosπ2+isinπ2)=eπ2iZ1=(i100i)0.5=(e(π2i)(100i))0.5=(e100π2)0.5=(e50π)0.5Z1=±e25πZ2=eπ32i=isin(π32)Z3=e9π4i=isin(9π4)
Commented by yaslm last updated on 07/Jan/23
thanks complete sir
Commented by Frix last updated on 07/Jan/23
If (e^(50π) )^(0.5) =±e^(25π)  then why e^((π/2)i)  which can  be written as (e^(πi) )^(0.5) ≠±e^((π/2)i) ? Same for e^(((π(√3))/2)i) .  Even worse: e^(((9π)/4)i) =(e^(9πi) )^(0.25) = { ((±e^(((9π)/4)i) )),((±ie^(((9π)/4)i) )) :}  You′re not using the same rule in each case...
If(e50π)0.5=±e25πthenwhyeπ2iwhichcanbewrittenas(eπi)0.5±eπ2i?Sameforeπ32i.Evenworse:e9π4i=(e9πi)0.25={±e9π4i±ie9π4iYourenotusingthesameruleineachcase
Answered by Frix last updated on 07/Jan/23
z=re^(iθ) ; r=∣z∣ ⇒ r∈R_0 ^+ ; −π<θ≤π  z^c =r^c e^(icθ) ∀c∈Z which is always unique    Z_1 =(√i^(−100i) )=(√((e^(i(π/2)) )^(−100i) ))=(√e^(−50πi^2 ) )=(√e^(50π) )=e^(25π)   Z_2 =i^(√3) =(e^(i(π/2)) )^(√3) =e^(i((π(√3))/2)) =cos ((π(√3))/2) +i sin ((π(√3))/2)  Z_3 =i^(9/2) =(e^(i(π/2)) )^(9/2) =e^(i((9π)/4)) =e^(i(π/4)) =((√2)/2)+((√2)/2)i
z=reiθ;r=∣zrR0+;π<θπzc=rceicθcZwhichisalwaysuniqueZ1=i100i=(eiπ2)100i=e50πi2=e50π=e25πZ2=i3=(eiπ2)3=eiπ32=cosπ32+isinπ32Z3=i92=(eiπ2)92=ei9π4=eiπ4=22+22i

Leave a Reply

Your email address will not be published. Required fields are marked *