Menu Close

Question-184497




Question Number 184497 by Noorzai last updated on 07/Jan/23
Answered by SEKRET last updated on 07/Jan/23
     x^x^x^(....)   =  y                    x^y   =  y     x =  y^( (1/y))            dx= −y^((1/y) −2) ∙(ln(y)−1)dy    ∫ y∙(−1)∙y^((1/y) −2) (lny−1) dy=     −1∙∫ y^((1/y) −1) ∙( ln(y) − 1 ) dy=   = ∫ y^((1/y) −1) dy − ∫y^((1/y)−1) ∙ln(y) dy  ......
$$\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}^{….} } } =\:\:\boldsymbol{\mathrm{y}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{y}}} \:\:=\:\:\boldsymbol{\mathrm{y}} \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}\:=\:\:\boldsymbol{\mathrm{y}}^{\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}} \:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{dx}}=\:−\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\:−\mathrm{2}} \centerdot\left(\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)−\mathrm{1}\right)\boldsymbol{\mathrm{dy}} \\ $$$$\:\:\int\:\boldsymbol{\mathrm{y}}\centerdot\left(−\mathrm{1}\right)\centerdot\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\:−\mathrm{2}} \left(\boldsymbol{\mathrm{lny}}−\mathrm{1}\right)\:\boldsymbol{\mathrm{dy}}= \\ $$$$\:\:\:−\mathrm{1}\centerdot\int\:\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\:−\mathrm{1}} \centerdot\left(\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:−\:\mathrm{1}\:\right)\:\boldsymbol{\mathrm{dy}}= \\ $$$$\:=\:\int\:\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\:−\mathrm{1}} \boldsymbol{\mathrm{dy}}\:−\:\int\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}−\mathrm{1}} \centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:\boldsymbol{\mathrm{dy}} \\ $$$$…… \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *