Question Number 184609 by cherokeesay last updated on 09/Jan/23
Answered by ajfour last updated on 09/Jan/23
$$\mathrm{cos}\:\left(\mathrm{2}\alpha−\mathrm{90}°\right)=\frac{\mathrm{2}}{{R}} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\mathrm{2}\alpha=\frac{\mathrm{2}}{{R}}={t} \\ $$$$\mathrm{tan}\:\alpha=\frac{{R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{2}{t}} \\ $$$$\mathrm{sin}\:\mathrm{2}\alpha=\frac{\mathrm{2tan}\:\alpha}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \alpha} \\ $$$$\Rightarrow \\ $$$$\:{t}^{\mathrm{2}} \left\{\mathrm{1}+\frac{\mathrm{2}−{t}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{4}{t}^{\mathrm{2}} }\right\}=\mathrm{1}+\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{3}{t}^{\mathrm{2}} +\mathrm{2}+\mathrm{2}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }=\mathrm{4}+\mathrm{4}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\mathrm{2}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} +}\mathrm{3}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)−\mathrm{1}=\mathrm{0} \\ $$$${hence}\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{3}}+\sqrt{\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:\:=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:\:\:{t}=\pm\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)}{\left(\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$
Answered by mr W last updated on 09/Jan/23
Commented by mr W last updated on 09/Jan/23
$${R}=\frac{{a}}{\mathrm{2}\:\mathrm{sin}\:{A}} \\ $$$${R}=\frac{\sqrt{\mathrm{10}}}{\mathrm{2}\:\mathrm{sin}\:\mathrm{45}°}=\sqrt{\mathrm{5}} \\ $$$$\mathrm{tan}\:\alpha=\frac{{R}+\sqrt{{R}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 09/Jan/23
$${Nice}\:!\:{thank}\:{you}\:{sir}. \\ $$