Menu Close

Question-184841




Question Number 184841 by Shrinava last updated on 12/Jan/23
Answered by manolex last updated on 12/Jan/23
y=2(√2)−(√7)   :  y=0.18:     0<y<1  y^2 =15−4(√(14))  (1/y)=2(√2)+(√7)  tenemos  y^x −2y+y^2 .(1/y^x )≪0                   (((y^x )^2 −2y(y^x )+y^2 )/y^x )≪0  (((y^x −y)^2 )/y^x )≪0  y^x >0     ⇒(y^x −y)^2 ≪0  y^x =y^1   y^x −y=0  (y)(y^(x−1) −1)=0  y_1 =0   no root     2(√2)−(√7) ≠1  y^(x−1)  =1=y^0   x=1  sum=1
$${y}=\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}\:\:\::\:\:{y}=\mathrm{0}.\mathrm{18}:\:\:\:\:\:\mathrm{0}<{y}<\mathrm{1} \\ $$$${y}^{\mathrm{2}} =\mathrm{15}−\mathrm{4}\sqrt{\mathrm{14}} \\ $$$$\frac{\mathrm{1}}{{y}}=\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{7}} \\ $$$${tenemos} \\ $$$${y}^{{x}} −\mathrm{2}{y}+{y}^{\mathrm{2}} .\frac{\mathrm{1}}{{y}^{{x}} }\ll\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\frac{\left({y}^{{x}} \right)^{\mathrm{2}} −\mathrm{2}{y}\left({y}^{{x}} \right)+{y}^{\mathrm{2}} }{{y}^{{x}} }\ll\mathrm{0} \\ $$$$\frac{\left({y}^{{x}} −{y}\right)^{\mathrm{2}} }{{y}^{{x}} }\ll\mathrm{0} \\ $$$${y}^{{x}} >\mathrm{0}\:\:\:\:\:\Rightarrow\left({y}^{{x}} −{y}\right)^{\mathrm{2}} \ll\mathrm{0} \\ $$$${y}^{{x}} ={y}^{\mathrm{1}} \\ $$$${y}^{{x}} −{y}=\mathrm{0} \\ $$$$\left({y}\right)\left({y}^{{x}−\mathrm{1}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${y}_{\mathrm{1}} =\mathrm{0}\:\:\:{no}\:{root}\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{7}}\:\neq\mathrm{1} \\ $$$${y}^{{x}−\mathrm{1}} \:=\mathrm{1}={y}^{\mathrm{0}} \\ $$$${x}=\mathrm{1} \\ $$$${sum}=\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *