Menu Close

Question-185013




Question Number 185013 by Shrinava last updated on 15/Jan/23
Commented by a.lgnaoui last updated on 16/Jan/23
question inteligente  (Clever question)
questioninteligente(Cleverquestion)
Commented by Shrinava last updated on 16/Jan/23
but a,b∈Z for please
buta,bZforplease
Commented by Shrinava last updated on 16/Jan/23
cool dear professor thank you
cooldearprofessorthankyou
Answered by a.lgnaoui last updated on 16/Jan/23
  A= (a^2 −2b^2 )   9A=(9a^2 −18b^2 )     6A^2 =6 (a^2 −2b^2 )^2  ;   A^3 =(a^2 −2b^2 )^3   27I_2  =27  A^3 −6A^2 +9A−27=0    A=5,2646329  a^2 −2b^2 =5,2646329  a^2 =2b^2 +5,264633    a^6 −8b^6 −3(2a^2 b^2 (a^2 −2b^2 )−6(a^4 +4b^4 −4a^2 b^2 )+9(a^2 −2b^2 )−27=0  a^6 −(a^2 −x_0 )^3 −6a^2 ×(((a^2 −x_0 )/2))x_0 −6[a^4 +4(((a^2 −x_0 ))/2))(((a^2 −x_0 ))/2)−a^2 )]+9x_0 −27=0  a^6 −(a^2 −x_0 )^3 −a^2 x_0 (a^2 −x_0 )−6(a^2 −x_0 )(((a^2 −x_0 )/2)−a^2 )+9x_0 −27=0  =3a^4 x_0 −3a^2 x_0 ^2 +x_0 ^3 −(a^2 −x_0 )[a^2 x_0 +3(a^2 −x_0 )−6a^2 )]+9x_0 −27=0  =3a^2 x_0 (a^2 −x_0 )+x_0 ^3 −(a^2 −x_0 )[a^2 (x_0 −3)−3x_0 ]+9x_0 −27=0  (a^2 −x_0 )[3a^2 x_0 −a^2 (x_0 −3)−3x_0 ]+x_0 ^3 +9x_0 −27=0  (a^2 −x_0 )[a^2 (2x_0 −3)−3x_0 ]+x_0 ^3 +9(x_0 −3)=0  (a^2 −x_0 )[2x_0 (a^2 −x_0 )−3(a^2 −x_0 )+2x_0 ^2 −6x_0 ]+x_0 ^3 +9(x_0 −3)  a^2 −x_0 =z    x_0 −3=y_0   z(2x_0 z−3+2x_0 y_0 )]+(y_0 +3)^3 +9y_0   2x_0 z^2 +(2x_0 y_0 −3)z+(y_0 +3)^2 +9y_0 =0  z^2 +(y_0 −(3/(2x_0 ))−(3/(2x_0 )))z+(y_0 +3)^2 +9y_0 =0  (z+((x_0 y_0 −3)/2))^2 −(((x_0 y_0 −3)^2 )/4)+x_0 ^3 +9y_0 =0  x_0 y_0 =5,264633×2,264633=11,922461  2x_0 =          y_0 =2,264633  (z+((8,922461)/2))^2 −(((8,922461)^2 )/4)+253,218  (z+4,46123)^2 −273,12057  (z+4,46123−(√(273,12057)) )=0  z=16,52636−4,46123=12,065129    a^2 −x_0 =12,065129  a^2 =12,065129+5,264633      =17,329762       a=4,163..  ;   b=2,277
A=(a22b2)9A=(9a218b2)6A2=6(a22b2)2;A3=(a22b2)327I2=27A36A2+9A27=0A=5,2646329a22b2=5,2646329a2=2b2+5,264633a68b63(2a2b2(a22b2)6(a4+4b44a2b2)+9(a22b2)27=0a6(a2x0)36a2×(a2x02)x06[a4+4(a2x0)2)(a2x0)2a2)]+9x027=0a6(a2x0)3a2x0(a2x0)6(a2x0)(a2x02a2)+9x027=0=3a4x03a2x02+x03(a2x0)[a2x0+3(a2x0)6a2)]+9x027=0=3a2x0(a2x0)+x03(a2x0)[a2(x03)3x0]+9x027=0(a2x0)[3a2x0a2(x03)3x0]+x03+9x027=0(a2x0)[a2(2x03)3x0]+x03+9(x03)=0(a2x0)[2x0(a2x0)3(a2x0)+2x026x0]+x03+9(x03)a2x0=zx03=y0z(2x0z3+2x0y0)]+(y0+3)3+9y02x0z2+(2x0y03)z+(y0+3)2+9y0=0z2+(y032x032x0)z+(y0+3)2+9y0=0(z+x0y032)2(x0y03)24+x03+9y0=0x0y0=5,264633×2,264633=11,9224612x0=y0=2,264633(z+8,9224612)2(8,922461)24+253,218(z+4,46123)2273,12057(z+4,46123273,12057)=0z=16,526364,46123=12,065129a2x0=12,065129a2=12,065129+5,264633=17,329762a=4,163..;b=2,277
Commented by aba last updated on 16/Jan/23
why A=a^2 −2b^2 ?
whyA=a22b2?
Commented by aba last updated on 16/Jan/23
A is a matrice
Aisamatrice
Commented by aba last updated on 16/Jan/23
A^3 +9A=6A^2 +27I_2  ⇒ A^3 −9A^2 +27A−27I_2 +3A^2 −18A=0                                          ⇒(A−3I_2 )^3 +3A(A−6I2)=0
A3+9A=6A2+27I2A39A2+27A27I2+3A218A=0(A3I2)3+3A(A6I2)=0
Commented by a.lgnaoui last updated on 16/Jan/23
A= determinant (((a+2b      2b)),((−b      a−2b)))=(a+2b)(a−2b)+2b^2 =a^2 −4b^2 +2b^2   =a^2 −2b^2     A=5,264633
A=|a+2b2bba2b|=(a+2b)(a2b)+2b2=a24b2+2b2=a22b2A=5,264633
Commented by Frix last updated on 16/Jan/23
A matrix is a matrix and a determinant is  a determinant. They are not interchangeable.
Amatrixisamatrixandadeterminantisadeterminant.Theyarenotinterchangeable.
Answered by Frix last updated on 16/Jan/23
I think there′s no solution for a, b ∈Z.  There′s not even one for a, b ∈R.
Ithinktheresnosolutionfora,bZ.Theresnotevenonefora,bR.
Answered by aleks041103 last updated on 17/Jan/23
characteristic polynomial of A:  p(x)= determinant (((a+2b−x),(2b)),((−b),(a−2b−x)))=  =(a+2b−x)(a−2b−x)+2b^2 =  =x^2 −2ax+(a^2 −2b^2 )  Hamilton−Cayley theorem:  p(A)=0  ⇒A^2 −2aA+(a^2 −2b^2 )I=0  ⇒A^2 =2aA+(2b^2 −a^2 )I  ⇒A^3 =AA^2 =A(2aA+(2b^2 −a^2 )I)=  =2aA^2 +(2b^2 −a^2 )A=  =2a(2aA+(2b^2 −a^2 )I)+(2b^2 −a^2 )A=  =(3a^2 +2b^2 )A+2a(2b^2 −a^2 )I  We want   A^3 −6A^2 +9A−27I=0  ⇒(3a^2 +2b^2 )A+2a(2b^2 −a^2 )I−6(2aA+(2b^2 −a^2 )I)+9A−27I=0  (3a^2 +2b^2 −12a+9)A=(2a^3 −4ab^2 −6a^2 +12b^2 +27)I  This means that either  A∼I, i.e. A is diagonal iff  3a^2 +2b^2 −12a+9≠0 and 2a^3 −4ab^2 −6a^2 +12b^2 +27≠0  or we get no info if both are 0.  but for a,b∈Z,  2a^3 −4ab^2 −6a^2 +12b^2 +27 is odd and cannot  be 0  ⇒A is diagonal, i.e.  A= (((a+2b),(2b)),((−b),(a−2b)) ) =  ((c,0),(0,c) )  ⇒b=0 and A=  ((a,0),(0,a) )  now if A^3 −6A^2 +9A−27I=0, then  a^3 −6a^2 +9a−27=0  the only solution in R is not in Z.  ⇒∄a,b∈Z, such that for  A= (((a+2b),(2b)),((−b),(a−2b)) )  is satisfied  A^3 +9A=6A^2 +27I
characteristicpolynomialofA:p(x)=|a+2bx2bba2bx|==(a+2bx)(a2bx)+2b2==x22ax+(a22b2)HamiltonCayleytheorem:p(A)=0A22aA+(a22b2)I=0A2=2aA+(2b2a2)IA3=AA2=A(2aA+(2b2a2)I)==2aA2+(2b2a2)A==2a(2aA+(2b2a2)I)+(2b2a2)A==(3a2+2b2)A+2a(2b2a2)IWewantA36A2+9A27I=0(3a2+2b2)A+2a(2b2a2)I6(2aA+(2b2a2)I)+9A27I=0(3a2+2b212a+9)A=(2a34ab26a2+12b2+27)IThismeansthateitherAI,i.e.Aisdiagonaliff3a2+2b212a+90and2a34ab26a2+12b2+270orwegetnoinfoifbothare0.butfora,bZ,2a34ab26a2+12b2+27isoddandcannotbe0Aisdiagonal,i.e.A=(a+2b2bba2b)=(c00c)b=0andA=(a00a)nowifA36A2+9A27I=0,thena36a2+9a27=0theonlysolutioninRisnotinZ.a,bZ,suchthatforA=(a+2b2bba2b)issatisfiedA3+9A=6A2+27I
Commented by Frix last updated on 17/Jan/23
Great!
Great!
Commented by Shrinava last updated on 20/Jan/23
perfect dear professor Aleks thank you
perfectdearprofessorAleksthankyou
Answered by Frix last updated on 17/Jan/23
Just to complete it:  A^3 −6A^2 +9A−27I_2 = [((term_1 ),(term_2 )),((term_3 ),(term_4 )) ]  All terms =0  (1) a^3 +6a^2 b+6ab^2 +4b^3 −6a^2 −24ab−12b^2 +9a+18b−27=0  (2) 6a^2 b+4b^3 −24ab+18b=0  (3) −3a^2 b−2b^3 +12ab−9b=0  (4) a^3 −6a^2 b+6ab^2 −4b^3 −6a^2 +24ab−12b^2 +9a−18b−27=0  From (2) or (3) we get  a=2+((√(3−2b^2 ))/( (√3)))s with s=±1  From (1) or (4) we get  ((2(8b^2 −3)(√(9−6b^2 )))/9)s−25=0  We get  s=−1∧b≈±1.58009i∧a≈.367684  s=+1∧b≈±(1.73133±.790045i)∧a≈2.81616±1.11729i
Justtocompleteit:A36A2+9A27I2=[term1term2term3term4]Allterms=0(1)a3+6a2b+6ab2+4b36a224ab12b2+9a+18b27=0(2)6a2b+4b324ab+18b=0(3)3a2b2b3+12ab9b=0(4)a36a2b+6ab24b36a2+24ab12b2+9a18b27=0From(2)or(3)wegeta=2+32b23swiths=±1From(1)or(4)weget2(8b23)96b29s25=0Wegets=1b±1.58009ia.367684s=+1b±(1.73133±.790045i)a2.81616±1.11729i

Leave a Reply

Your email address will not be published. Required fields are marked *