Menu Close

Question-185257




Question Number 185257 by Kalebwizeman last updated on 19/Jan/23
Answered by SEKRET last updated on 19/Jan/23
((25)/(126))
25126
Answered by SEKRET last updated on 19/Jan/23
Q185134
Q185134
Commented by Kalebwizeman last updated on 19/Jan/23
oh thanks
ohthanks
Answered by a.lgnaoui last updated on 19/Jan/23
Methode 1  (sin^2 x+cos^2 x)^2 =sin^4 x+cos^4 x+2sinx^2 cosx^2   1=sin^4 x+cos^4 x+((sin^2 2x )/2) (1)  cos^2 x−sin^2 x=cos 2x=2cos^2 x−1  cos^2 x=((cos 2x+1)/2)            (2)  (1)⇔1=sin^4 x+(((cos2x+1 )/2))^2 +((sin^2 2x )/2)   (((cos2x+1)^2 +2sin^2 2x  )/4)=1−sin^4 x(i)  d apres ((sin^4 x)/5) +((cos^4 x )/7)=(1/(12))  sin^4 x=(5/(12)) −((5cosx^4  )/7)    ((5cos^4 x)/7)+(7/(12))=(((cos2x+1)^2 +2sin^2 2x )/4)  (((cos2x+1)^2 +2sin^2 2x  )/4)−((5(cos 2x+1)^2 )/(28))=(7/(12))  [(((cos 2x+1)^2 )/4)−((5(cos 2x+1)^2 )/(28))]+((2(1−cos^2 2x) )/4)=(7/(12))    cos^2 2x−((cos 2x)/3) +(1/(36))=0      △=0   cos 2x=(1/6)   ⇒sin 2x=((√(35))/6)  donc  ((sin^2 2x)/5)+((cos2x^2 )/7) =(((35)/(36))/5)+((1/(36))/7)         [ ((sin^2 2x )/5)+((cos^2 2x )/7) =((25)/(126))
Methode1(sin2x+cos2x)2=sin4x+cos4x+2sinx2cosx21=sin4x+cos4x+sin22x2(1)cos2xsin2x=cos2x=2cos2x1cos2x=cos2x+12(2)(1)1=sin4x+(cos2x+12)2+sin22x2(cos2x+1)2+2sin22x4=1sin4x(i)dapressin4x5+cos4x7=112sin4x=5125cosx475cos4x7+712=(cos2x+1)2+2sin22x4(cos2x+1)2+2sin22x45(cos2x+1)228=712[(cos2x+1)245(cos2x+1)228]+2(1cos22x)4=712cos22xcos2x3+136=0=0cos2x=16sin2x=356doncsin22x5+cos2x27=35365+1367[sin22x5+cos22x7=25126

Leave a Reply

Your email address will not be published. Required fields are marked *