Question Number 185257 by Kalebwizeman last updated on 19/Jan/23

Answered by SEKRET last updated on 19/Jan/23

Answered by SEKRET last updated on 19/Jan/23

Commented by Kalebwizeman last updated on 19/Jan/23

Answered by a.lgnaoui last updated on 19/Jan/23
![Methode 1 (sin^2 x+cos^2 x)^2 =sin^4 x+cos^4 x+2sinx^2 cosx^2 1=sin^4 x+cos^4 x+((sin^2 2x )/2) (1) cos^2 x−sin^2 x=cos 2x=2cos^2 x−1 cos^2 x=((cos 2x+1)/2) (2) (1)⇔1=sin^4 x+(((cos2x+1 )/2))^2 +((sin^2 2x )/2) (((cos2x+1)^2 +2sin^2 2x )/4)=1−sin^4 x(i) d apres ((sin^4 x)/5) +((cos^4 x )/7)=(1/(12)) sin^4 x=(5/(12)) −((5cosx^4 )/7) ((5cos^4 x)/7)+(7/(12))=(((cos2x+1)^2 +2sin^2 2x )/4) (((cos2x+1)^2 +2sin^2 2x )/4)−((5(cos 2x+1)^2 )/(28))=(7/(12)) [(((cos 2x+1)^2 )/4)−((5(cos 2x+1)^2 )/(28))]+((2(1−cos^2 2x) )/4)=(7/(12)) cos^2 2x−((cos 2x)/3) +(1/(36))=0 △=0 cos 2x=(1/6) ⇒sin 2x=((√(35))/6) donc ((sin^2 2x)/5)+((cos2x^2 )/7) =(((35)/(36))/5)+((1/(36))/7) [ ((sin^2 2x )/5)+((cos^2 2x )/7) =((25)/(126))](https://www.tinkutara.com/question/Q185275.png)