Menu Close

Question-185269




Question Number 185269 by Rupesh123 last updated on 19/Jan/23
Answered by aleks041103 last updated on 19/Jan/23
p=(√(n−8))+(√(n+8))⇒n≥8  p^2 =2n−2(√(n^2 −64))  ⇒(√(4(n^2 −64)))=2n−p^2   since n,p∈Z⇒(√(4(n^2 −64)))∈Z  ⇒∃m∈Z⇒4n^2 −16^2 =m^2   ⇒4∣m^2 ⇒2∣m, so let m→2m  ⇒4n^2 −16^2 =4m^2   ⇒n^2 −8^2 =m^2 ⇒(n−m)(n+m)=8^2 =2^6   also n≥8⇒n+m≥8  ⇒n+m=8,16,32,64  n−m=8,4,2,1  so  (n,m)∈{(8,0),(10,6),(17,15)}  this is necessary but insufficient  aftef check  n=8⇒p=(√(8−8))+(√(8+8))=4∈Z  n=10⇒p=(√(10−8))+(√(10+8))=10(√2)∉Z  n=17⇒p=(√(17−8))+(√(17+8))=8∈Z  ⇒n∈{8,17}  Ans. 25
p=n8+n+8n8p2=2n2n2644(n264)=2np2sincen,pZ4(n264)ZmZ4n2162=m24m22m,soletm2m4n2162=4m2n282=m2(nm)(n+m)=82=26alson8n+m8n+m=8,16,32,64nm=8,4,2,1so(n,m){(8,0),(10,6),(17,15)}thisisnecessarybutinsufficientaftefcheckn=8p=88+8+8=4Zn=10p=108+10+8=102Zn=17p=178+17+8=8Zn{8,17}Ans.25
Answered by Frix last updated on 19/Jan/23
u=(√(n−8)) ⇒ n=u^2 +8 ⇒  (√(n+8))=(√(u^2 +16))=v∈Z ⇒  u^2 +16=v^2   v^2 −u^2 =16  v=u+w  (2u+w)w=16  ⇒  w=1∧2u+1=16 impossible  w=2∧2u+2=8 ⇒ u=3 ⇒ n=17 ★  w=4∧2u+4=4 ⇒ u=0  ⇒ n=8 ★  w=8∧2u+8=2 impossible  w=16∧2u+16=1 impossible
u=n8n=u2+8n+8=u2+16=vZu2+16=v2v2u2=16v=u+w(2u+w)w=16w=12u+1=16impossiblew=22u+2=8u=3n=17w=42u+4=4u=0n=8w=82u+8=2impossiblew=162u+16=1impossible

Leave a Reply

Your email address will not be published. Required fields are marked *