Menu Close

Question-185325




Question Number 185325 by Ml last updated on 20/Jan/23
Answered by aleks041103 last updated on 20/Jan/23
14+8(√3)=14+2.2(√2).(√6)=  =((√6))^2 +(2(√2))^2 +2(2(√2))((√6))=  =((√6)+2(√2))^2   ⇒(√(14+8(√3)))=(√(((√6)+2(√2))^2 ))=(√6)+2(√2)  ⇒b=(√6)  ⇒2(√3).(√6)=6(√2)  ⇒Ans. 2b(√3)=6(√2)
$$\mathrm{14}+\mathrm{8}\sqrt{\mathrm{3}}=\mathrm{14}+\mathrm{2}.\mathrm{2}\sqrt{\mathrm{2}}.\sqrt{\mathrm{6}}= \\ $$$$=\left(\sqrt{\mathrm{6}}\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)\left(\sqrt{\mathrm{6}}\right)= \\ $$$$=\left(\sqrt{\mathrm{6}}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\mathrm{14}+\mathrm{8}\sqrt{\mathrm{3}}}=\sqrt{\left(\sqrt{\mathrm{6}}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }=\sqrt{\mathrm{6}}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{b}=\sqrt{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{3}}.\sqrt{\mathrm{6}}=\mathrm{6}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{Ans}.\:\mathrm{2}{b}\sqrt{\mathrm{3}}=\mathrm{6}\sqrt{\mathrm{2}} \\ $$
Answered by HeferH last updated on 20/Jan/23
 (√2) ∙ (√(7 + 2∙2(√3))) − 2(√2)=b   (√2)∙(√(4 + 3 + 2∙2(√3)))−2(√2) = b   (√2) ∙ (√((2+(√3))^2 )) − 2(√2)=b   2(√2) + (√6) − 2(√2) = b   b = (√6) ⇒ b∙2(√3) = 6(√2)
$$\:\sqrt{\mathrm{2}}\:\centerdot\:\sqrt{\mathrm{7}\:+\:\mathrm{2}\centerdot\mathrm{2}\sqrt{\mathrm{3}}}\:−\:\mathrm{2}\sqrt{\mathrm{2}}={b} \\ $$$$\:\sqrt{\mathrm{2}}\centerdot\sqrt{\mathrm{4}\:+\:\mathrm{3}\:+\:\mathrm{2}\centerdot\mathrm{2}\sqrt{\mathrm{3}}}−\mathrm{2}\sqrt{\mathrm{2}}\:=\:{b} \\ $$$$\:\sqrt{\mathrm{2}}\:\centerdot\:\sqrt{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:−\:\mathrm{2}\sqrt{\mathrm{2}}={b} \\ $$$$\:\mathrm{2}\sqrt{\mathrm{2}}\:+\:\sqrt{\mathrm{6}}\:−\:\mathrm{2}\sqrt{\mathrm{2}}\:=\:{b} \\ $$$$\:{b}\:=\:\sqrt{\mathrm{6}}\:\Rightarrow\:{b}\centerdot\mathrm{2}\sqrt{\mathrm{3}}\:=\:\mathrm{6}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *