Question Number 185486 by sonukgindia last updated on 22/Jan/23
Answered by a.lgnaoui last updated on 23/Jan/23
$$\mathrm{A}−\left(\mathrm{B}+\mathrm{C}\right)=\mathrm{0} \\ $$$$\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{2}\left(\mathrm{B}+\mathrm{C}\right)=\mathrm{2A} \\ $$$$\mathrm{A}+\mathrm{B}−\mathrm{C}=\mathrm{A}−\left(\mathrm{B}+\mathrm{C}\right)+\mathrm{2B}=\mathrm{2B} \\ $$$$\mathrm{A}−\mathrm{B}+\mathrm{C}=\mathrm{A}−\left(\mathrm{B}+\mathrm{C}\right)+\mathrm{2C}=\mathrm{2C} \\ $$$$ \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{A}+\mathrm{B}+\mathrm{C}\right)+\mathrm{sin}\:\left(\mathrm{A}+\mathrm{B}−\mathrm{C}\right)+\mathrm{sin}\:\left(\mathrm{A}−\mathrm{B}+\mathrm{C}\right)}{\mathrm{2sin}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}= \\ $$$$\frac{\mathrm{sin}\:\mathrm{2A}+\mathrm{sin}\:\mathrm{2B}+\mathrm{sin}\:\mathrm{2C}}{\mathrm{2sin}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}= \\ $$$$\frac{\mathrm{2}\left[\mathrm{sin}\:\mathrm{Acos}\:\mathrm{A}+\mathrm{sin}\:\mathrm{Bcos}\:\mathrm{B}+\mathrm{sin}\:\mathrm{Ccos}\:\mathrm{C}\right]}{\mathrm{2sin}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}= \\ $$$$\frac{\mathrm{cos}\:\mathrm{A}}{\mathrm{cos}\:\mathrm{Bcos}\:\mathrm{C}}+\frac{\mathrm{tan}\:\mathrm{B}}{\mathrm{sin}\:\mathrm{Acos}\:\mathrm{C}}+\frac{\mathrm{tan}\:\mathrm{C}}{\mathrm{sin}\:\mathrm{Acos}\:\mathrm{B}} \\ $$$$=\frac{\mathrm{cos}\:\mathrm{A}}{\mathrm{cos}\:\mathrm{Bcos}\:\mathrm{C}}+\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{A}}\left(\frac{\mathrm{tan}\:\mathrm{B}}{\mathrm{cos}\:\mathrm{C}}+\frac{\mathrm{tan}\:\mathrm{C}}{\mathrm{cos}\:\mathrm{B}}\right) \\ $$$$=\frac{\mathrm{cos}\:\mathrm{A}}{\mathrm{cos}\:\mathrm{Bcos}\:\mathrm{C}}+\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{A}}\left(\frac{\mathrm{sin}\:\mathrm{B}+\mathrm{sin}\:\mathrm{C}}{\mathrm{cos}\:\mathrm{Bcos}\:\mathrm{C}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{Bcos}\:\mathrm{C}}\left[\mathrm{cos}\:\mathrm{A}+\frac{\mathrm{sin}\:\mathrm{B}+\mathrm{sin}\:\mathrm{C}}{\mathrm{sin}\:\mathrm{A}}\right]\:\left(\mathrm{1}\right) \\ $$$$\mathrm{sin}\:\mathrm{A}=\mathrm{sin}\:\left(\mathrm{B}+\mathrm{C}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{B}}\:\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{C}}}\left[\left(\boldsymbol{\mathrm{cos}}\:\left(\boldsymbol{\mathrm{B}}+\boldsymbol{\mathrm{C}}\right)+\frac{\boldsymbol{\mathrm{sin}}\:\mathrm{B}+\boldsymbol{\mathrm{sin}}\:\mathrm{C}}{\boldsymbol{\mathrm{sin}}\:\left(\boldsymbol{\mathrm{B}}+\boldsymbol{\mathrm{C}}\right)}\right)\right] \\ $$$$ \\ $$$$=\frac{\mathrm{1}}{\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{A}}+\boldsymbol{\mathrm{sinBsinC}}\:}\left[\boldsymbol{\mathrm{cos}}\:\boldsymbol{\mathrm{A}}+\frac{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{B}}+\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{C}}}{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{A}}}\right] \\ $$
Commented by mr W last updated on 23/Jan/23
$${this}\:{is}\:{like}\:{when}\:{you}\:{try}\:{to}\:{simplify}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:{to}\:\frac{\mathrm{4}}{\mathrm{2}+\frac{\mathrm{3}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}}. \\ $$
Answered by Frix last updated on 23/Jan/23
$${a}={b}+{c} \\ $$$$\mathrm{sin}\:\left({a}+{b}+{c}\right)\:+\mathrm{sin}\:\left({a}+{b}−{c}\right)\:+\mathrm{sin}\:\left({a}−{b}+{c}\right)\:= \\ $$$$=\mathrm{sin}\:\left(\mathrm{2}{b}+\mathrm{2}{c}\right)\:+\mathrm{sin}\:\mathrm{2}{b}\:+\mathrm{sin}\:\mathrm{2}{c} \\ $$$$\mathrm{2sin}\:{a}\:\mathrm{cos}\:{b}\:\mathrm{cos}\:{c}\:= \\ $$$$=\mathrm{2cos}^{\mathrm{2}} \:{b}\:\mathrm{sin}\:{c}\:\mathrm{cos}\:{c}\:+\mathrm{2sin}\:{b}\:\mathrm{cos}\:{b}\:\mathrm{cos}^{\mathrm{2}} \:{c}\:= \\ $$$$=\frac{\mathrm{sin}\:\left(\mathrm{2}{b}+\mathrm{2}{c}\right)\:+\mathrm{sin}\:\mathrm{2}{b}\:+\mathrm{sin}\:\mathrm{2}{c}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\mathrm{2} \\ $$