Menu Close

Question-185510




Question Number 185510 by mathlove last updated on 23/Jan/23
Answered by mahdipoor last updated on 23/Jan/23
6x−8sin(x)+sin(2x)=  6x−8(x−(x^3 /(3!))+(x^5 /(5!))−(x^7 /(7!))+....)+  (2x−((8x^3 )/(3!))+((32x^5 )/(5!))−((128x^7 )/(7!))+...)=  (6−8+2)x+((8/(3!))−(8/(3!)))x^3 +(((−8)/(5!))+((32)/(5!)))x^5 +ax^7 +....  =((24)/(5!))x^5 +ax^7 +...  lim_(x→0) ((6x−8sinx+sin2x)/x^5 )=lim_(x→0) (((24)/(5!))+ax^2 +...)=  ((24)/(5!))=(1/5)
6x8sin(x)+sin(2x)=6x8(xx33!+x55!x77!+.)+(2x8x33!+32x55!128x77!+)=(68+2)x+(83!83!)x3+(85!+325!)x5+ax7+.=245!x5+ax7+limx06x8sinx+sin2xx5=limx0(245!+ax2+)=245!=15
Commented by MJS_new last updated on 23/Jan/23
but it says “without series”...
butitsayswithoutseries

Leave a Reply

Your email address will not be published. Required fields are marked *