Menu Close

Question-185517




Question Number 185517 by Noorzai last updated on 23/Jan/23
Answered by Ar Brandon last updated on 23/Jan/23
Ω=∫_0 ^∞ ((lnx)/(x^6 −1))dx=∫_0 ^1 ((lnx)/(x^6 −1))dx+∫_1 ^∞ ((lnx)/(x^6 −1))dx      =∫_0 ^1 ((lnx)/(x^6 −1))dx−∫_0 ^1 ((x^4 lnx)/(1−x^6 ))dx=−(1/(36))∫_0 ^1 ((x^(−(5/6)) +x^(−(1/6)) )/(1−x))lnxdx      =(1/(36))(ψ^((1)) ((1/6))+ψ^((1)) ((5/6)))=(π^2 /(36))cosec^2 ((π/6))=(π^2 /9)
$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}+\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}} \mathrm{ln}{x}}{\mathrm{1}−{x}^{\mathrm{6}} }{dx}=−\frac{\mathrm{1}}{\mathrm{36}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{−\frac{\mathrm{5}}{\mathrm{6}}} +{x}^{−\frac{\mathrm{1}}{\mathrm{6}}} }{\mathrm{1}−{x}}\mathrm{ln}{xdx} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{36}}\left(\psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{6}}\right)+\psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{5}}{\mathrm{6}}\right)\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{36}}\mathrm{cosec}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{6}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *