Menu Close

Question-185580




Question Number 185580 by Shrinava last updated on 23/Jan/23
Answered by JDamian last updated on 24/Jan/23
S=Σ_(k=1) ^n [ ((n),(k) ) ∙Σ_(m=1) ^n m^(n−k) ]     =Σ_(k=1) ^n Σ_(m=1) ^n  ((n),(k) )∙m^(n−k) =Σ_(m=1) ^n Σ_(k=1) ^n  ((n),(k) )∙m^(n−k)      =Σ_(m=1) ^n [(m+1)^n −m^n ]=(n+1)^n −1    31+(n+1)^n −1=31^(30)
$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\:\centerdot\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{m}^{{n}−{k}} \right] \\ $$$$\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\centerdot{m}^{{n}−{k}} =\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\centerdot{m}^{{n}−{k}} \\ $$$$\:\:\:=\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({m}+\mathrm{1}\right)^{{n}} −{m}^{{n}} \right]=\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1} \\ $$$$ \\ $$$$\mathrm{31}+\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1}=\mathrm{31}^{\mathrm{30}} \\ $$
Commented by Shrinava last updated on 24/Jan/23
thank you dear professor, to be continued?
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{to}\:\mathrm{be}\:\mathrm{continued}? \\ $$
Commented by JDamian last updated on 25/Jan/23
31+(n+1)^n −1=31^(30)   (n+1)^n −1=31^(30) −31=31(31^(29) −1)  [(n+1)^n −1]mod 31=31(31^(29) −1)mod 31=0  [(n+1)^n −1]mod 31=0
$$\mathrm{31}+\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1}=\mathrm{31}^{\mathrm{30}} \\ $$$$\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1}=\mathrm{31}^{\mathrm{30}} −\mathrm{31}=\mathrm{31}\left(\mathrm{31}^{\mathrm{29}} −\mathrm{1}\right) \\ $$$$\left[\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1}\right]\mathrm{mod}\:\mathrm{31}=\mathrm{31}\left(\mathrm{31}^{\mathrm{29}} −\mathrm{1}\right)\mathrm{mod}\:\mathrm{31}=\mathrm{0} \\ $$$$\left[\left({n}+\mathrm{1}\right)^{{n}} −\mathrm{1}\right]\mathrm{mod}\:\mathrm{31}=\mathrm{0} \\ $$
Commented by Shrinava last updated on 25/Jan/23
Ans = 0 dear professor?
$$\mathrm{Ans}\:=\:\mathrm{0}\:\mathrm{dear}\:\mathrm{professor}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *