Question Number 185677 by Mingma last updated on 25/Jan/23
Answered by Frix last updated on 25/Jan/23
$$\frac{{df}}{{dx}}=\mathrm{e}^{\mid{x}\mid} −\mathrm{e}^{\mid{x}−\mathrm{2}\mid} =\mathrm{0}\:\Rightarrow\:{x}=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)=\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\mathrm{e}^{\mid\mathrm{1}−{t}\mid} {dt}=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{e}^{\mathrm{1}−{t}} {dt}=\mathrm{2}\left[−\mathrm{e}^{\mathrm{1}−{t}} \right]_{\mathrm{0}} ^{\mathrm{1}} = \\ $$$$=\mathrm{2}\left(\mathrm{e}−\mathrm{1}\right) \\ $$