Menu Close

Question-185770




Question Number 185770 by Mingma last updated on 27/Jan/23
Answered by mahdipoor last updated on 27/Jan/23
ΔADB:  ((AB)/(sin(180−(20+x))))=((BD)/(sin(x)))  ΔBDC:  ((BD)/(sin30))=((BC)/(sin(180−(50+30))))  ΔABC:  ((AB)/(sin70))=((BC)/(sin(180−(70+70))))  ⇒⇒BD=((sin(x))/(sin(20+x)))AB=((sin(30))/(sin(80)))BC=  ((sin(30))/(sin(80)))×((sin(40))/(sin(70)))AB  ⇒((sin(x))/(sin(x+20)))=((sin(40).sin(30))/(sin(70).sin(80)))⇒  ctg(x)=((sin(70)sin(80))/(sin(40)sin(30)sin(20)))−ctg(20)  ⇒x=10
ΔADB:ABsin(180(20+x))=BDsin(x)ΔBDC:BDsin30=BCsin(180(50+30))ΔABC:ABsin70=BCsin(180(70+70))⇒⇒BD=sin(x)sin(20+x)AB=sin(30)sin(80)BC=sin(30)sin(80)×sin(40)sin(70)ABsin(x)sin(x+20)=sin(40).sin(30)sin(70).sin(80)ctg(x)=sin(70)sin(80)sin(40)sin(30)sin(20)ctg(20)x=10

Leave a Reply

Your email address will not be published. Required fields are marked *