Question Number 185776 by TUN last updated on 27/Jan/23
Answered by MJS_new last updated on 27/Jan/23
$${n}!\sim\frac{{n}^{{n}} }{\mathrm{e}^{{n}} }\sqrt{\mathrm{2}\pi{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\left(\mathrm{2}{n}\right)!}{{n}!{n}^{{n}} }\right)^{\mathrm{1}/{n}} \:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{4}×\mathrm{2}^{\mathrm{1}/\left(\mathrm{2}{n}\right)} }{\mathrm{e}}\:=\frac{\mathrm{4}}{\mathrm{e}} \\ $$
Answered by CElcedricjunior last updated on 27/Jan/23