Menu Close

Question-185794




Question Number 185794 by Rupesh123 last updated on 27/Jan/23
Commented by Rupesh123 last updated on 27/Jan/23
Solve in R
Answered by a.lgnaoui last updated on 27/Jan/23
((tan x)/(tan y))=−1     y=−x+kπ    (k∈Z)  k=0    y=−x  k=1  y=π−x  k=0,1     { ((sin xcos x=(1/2)       ⇒    x=(π/4) y=−(π/4) )),((sin2 x=−1               ⇒x=−(π/4)      y=((5π)/4)  )) :}   solutions:  {(−(π/4),((5π)/4));((π/4),−(π/4))}
tanxtany=1y=x+kπ(kZ)k=0y=xk=1y=πxk=0,1{sinxcosx=12x=π4y=π4sin2x=1x=π4y=5π4solutions:{(π4,5π4);(π4,π4)}
Commented by MJS_new last updated on 27/Jan/23
“solve in R”  I′m afraid you have not found all solutions
solveinRImafraidyouhavenotfoundallsolutions
Answered by a.lgnaoui last updated on 28/Jan/23
auther methode  cos y=(1/(2sin  x))    (1)   x≠kπ  (√(1−sin^2 x ))(√(1−(1/(4sin^2 x )))) =−(1/2)  (1−sin^2 x)(1−(1/(4sin^2 x)))=(1/4)  sin^2  x=z  (1−z)(1−(1/(4z)))=(1/4)  z^2 −z+(1/4)=0  △=0    z=(1/2)  sin^2 x=(1/2)⇒sin x=±((√2)/2)  x={−(π/4),+(π/4),((3π)/4),((5π)/4)}mod(2π)  1•x=−(π/4)⇒y=cos^(−1) ((1/(2sin x)))=  =cos^(−1) (−((√2)/2))    y={((3π)/4),((5π)/4)}mod(2π)   ((3π)/4) exclu   y=((5π)/4)  2•x=+(π/4)⇒y=cos^(−1) (((√2)/2))      y={−(π/4)} ; (π/4)exclu  3•x=((3π)/4)    y=+(π/4)(mod2π)  4•x=((5π)/4)   y=((3π)/4)mod(2π)  Resume  −−−−−−−−−−−−  S=(−(π/4),((5π)/4));(+(π/4),−(π/4));  (((3π)/4),+(π/4));(((5π)/4),((3π)/4))
authermethodecosy=12sinx(1)xkπ1sin2x114sin2x=12(1sin2x)(114sin2x)=14sin2x=z(1z)(114z)=14z2z+14=0=0z=12sin2x=12sinx=±22x={π4,+π4,3π4,5π4}mod(2π)1x=π4y=cos1(12sinx)==cos1(22)y={3π4,5π4}mod(2π)3π4excluy=5π42x=+π4y=cos1(22)y={π4};π4exclu3x=3π4y=+π4(mod2π)4x=5π4y=3π4mod(2π)ResumeS=(π4,5π4);(+π4,π4);(3π4,+π4);(5π4,3π4)

Leave a Reply

Your email address will not be published. Required fields are marked *