Menu Close

Question-185828




Question Number 185828 by normans last updated on 28/Jan/23
Commented by mr W last updated on 28/Jan/23
(x+y+z)_(min) =(√((a^2 +b^2 +c^2 +4(√3)Δ)/2))  Δ=area of triangle ABC  cos B=((2^2 +4^2 −(2(√3))^2 )/(2×2×4))=(1/2)  ⇒sin B=((√3)/2)  Δ=((2×4×(√3))/(2×2))=2(√3)  (x+y+z)_(min) =(√((2^2 +4^2 +(2(√3))^2 +4(√3)×2(√3))/2))                           =2(√7)
$$\left({x}+{y}+{z}\right)_{{min}} =\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\Delta}{\mathrm{2}}} \\ $$$$\Delta={area}\:{of}\:{triangle}\:{ABC} \\ $$$$\mathrm{cos}\:{B}=\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:{B}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Delta=\frac{\mathrm{2}×\mathrm{4}×\sqrt{\mathrm{3}}}{\mathrm{2}×\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\left({x}+{y}+{z}\right)_{{min}} =\sqrt{\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}×\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\sqrt{\mathrm{7}} \\ $$
Commented by mr W last updated on 28/Jan/23
see Q164174
$${see}\:{Q}\mathrm{164174} \\ $$
Commented by normans last updated on 28/Jan/23
nice sir
$${nice}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *