Question Number 186046 by ajfour last updated on 31/Jan/23
Commented by ajfour last updated on 31/Jan/23
$${A}\:{fixed}\:{spherical}\:{crucible}\:{holds} \\ $$$${two}\:{solid}\:{balls}\:{of}\:{radii}\:{a}\:{and}\:{b} \\ $$$${while}\:{they}\:{have}\:{the}\:{same}\:{density}\:\rho. \\ $$$${Find}\:{theNormal}\:{Reaction}\:{between} \\ $$$${the}\:{balls}. \\ $$
Answered by mr W last updated on 31/Jan/23
Commented by mr W last updated on 31/Jan/23
$${M}_{{A}} =\frac{\mathrm{4}\pi{a}^{\mathrm{3}} \rho}{\mathrm{3}} \\ $$$${M}_{{B}} =\frac{\mathrm{4}\pi{b}^{\mathrm{3}} \rho}{\mathrm{3}} \\ $$$${OA}={r}−{a} \\ $$$${OB}={r}−{b} \\ $$$${AB}={a}+{b} \\ $$$$\frac{{AC}}{{CB}}=\frac{{M}_{{B}} }{{M}_{{A}} }=\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} } \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)=\frac{\left({r}−{a}\right)^{\mathrm{2}} +\left({r}−{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({r}−{a}\right)\left({r}−{b}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}−\frac{\mathrm{2}{ab}}{\left({r}−{a}\right)\left({r}−{b}\right)}=\xi,\:{say} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\alpha+\beta\right)=\sqrt{\mathrm{1}−\xi^{\mathrm{2}} }=\frac{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}{\left({r}−{a}\right)\left({r}−{b}\right)} \\ $$$$\frac{\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\alpha+\beta\right)}=\frac{{OB}}{{AB}}=\frac{{r}−{b}}{{a}+{b}} \\ $$$$\Rightarrow\mathrm{sin}\:\gamma=\frac{{r}−{b}}{{a}+{b}}×\frac{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}{\left({r}−{a}\right)\left({r}−{b}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}{\left({r}−{a}\right)\left({a}+{b}\right)} \\ $$$${similarly}, \\ $$$$\mathrm{sin}\:\delta=\frac{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}{\left({r}−{b}\right)\left({a}+{b}\right)} \\ $$$$\frac{{OC}}{\mathrm{sin}\:\gamma}=\frac{{AC}}{\mathrm{sin}\:\alpha} \\ $$$$\frac{\mathrm{sin}\:\delta}{{OC}}=\frac{\mathrm{sin}\:\beta}{{CB}} \\ $$$$\frac{\mathrm{sin}\:\delta}{\mathrm{sin}\:\gamma}=\frac{{AC}}{{CB}}×\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha} \\ $$$$\frac{{r}−{a}}{{r}−{b}}=\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }×\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha}=\frac{{a}^{\mathrm{3}} \left({r}−{a}\right)}{{b}^{\mathrm{3}} \left({r}−{b}\right)}=\lambda,\:{say} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta=\xi \\ $$$$\sqrt{\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right)\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\beta\right)}−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta=\xi \\ $$$$\sqrt{\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right)\left(\mathrm{1}−\lambda^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\alpha\right)}=\xi+\lambda\:\mathrm{sin}^{\mathrm{2}} \:\alpha \\ $$$$\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha\right)\left(\mathrm{1}−\lambda^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\alpha\right)=\left(\xi+\lambda\:\mathrm{sin}^{\mathrm{2}} \:\alpha\right)^{\mathrm{2}} \\ $$$$\mathrm{1}−\xi^{\mathrm{2}} =\left(\mathrm{1}+\lambda^{\mathrm{2}} +\mathrm{2}\xi\lambda\right)\:\mathrm{sin}^{\mathrm{2}} \:\alpha \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\sqrt{\frac{\mathrm{1}−\xi^{\mathrm{2}} }{\mathrm{1}−\xi^{\mathrm{2}} +\left(\lambda+\xi\right)^{\mathrm{2}} }} \\ $$$$\frac{{N}}{{M}_{{A}} {g}}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\gamma}=\frac{\left({r}−{a}\right)\left({a}+{b}\right)}{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}\sqrt{\frac{\mathrm{1}−\xi^{\mathrm{2}} }{\mathrm{1}−\xi^{\mathrm{2}} +\left(\lambda+\xi\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow{N}=\frac{\left({r}−{a}\right)\left({a}+{b}\right)}{\mathrm{2}\sqrt{{abr}\left({r}−{a}−{b}\right)}}\sqrt{\frac{\mathrm{1}−\xi^{\mathrm{2}} }{\mathrm{1}−\xi^{\mathrm{2}} +\left(\lambda+\xi\right)^{\mathrm{2}} }}×{M}_{{A}} {g} \\ $$$$ \\ $$$${example}: \\ $$$${a}=\mathrm{3},\:{b}=\mathrm{2},\:{r}=\mathrm{10},\:{M}_{{A}} =\mathrm{27}\:{kg},\:{M}_{{B}} =\mathrm{8}\:{kg} \\ $$$$\xi=\mathrm{1}−\frac{\mathrm{2}{ab}}{\left({r}−{a}\right)\left({r}−{b}\right)}=\mathrm{1}−\frac{\mathrm{2}×\mathrm{3}×\mathrm{2}}{\mathrm{7}×\mathrm{8}}=\frac{\mathrm{11}}{\mathrm{14}} \\ $$$$\lambda=\frac{{a}^{\mathrm{3}} \left({r}−{a}\right)}{{b}^{\mathrm{3}} \left({r}−{b}\right)}=\frac{\mathrm{3}^{\mathrm{3}} ×\mathrm{7}}{\mathrm{2}^{\mathrm{3}} ×\mathrm{8}}=\frac{\mathrm{189}}{\mathrm{64}} \\ $$$${N}=\frac{\mathrm{7}×\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{3}×\mathrm{2}×\mathrm{10}×\mathrm{5}}}\sqrt{\frac{\mathrm{1}−\frac{\mathrm{11}^{\mathrm{2}} }{\mathrm{14}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{11}^{\mathrm{2}} }{\mathrm{14}^{\mathrm{2}} }+\left(\frac{\mathrm{189}}{\mathrm{64}}+\frac{\mathrm{11}}{\mathrm{14}}\right)^{\mathrm{2}} }}×\mathrm{27}×\mathrm{10} \\ $$$$\:\:\:\:=\frac{\mathrm{2160}}{\:\sqrt{\mathrm{2353}}}\approx\mathrm{44}.\mathrm{529}\:{N} \\ $$$${or} \\ $$$${N}=\frac{\mathrm{8}×\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{3}×\mathrm{2}×\mathrm{10}×\mathrm{5}}}\sqrt{\frac{\mathrm{1}−\frac{\mathrm{11}^{\mathrm{2}} }{\mathrm{14}^{\mathrm{2}} }}{\mathrm{1}−\frac{\mathrm{11}^{\mathrm{2}} }{\mathrm{14}^{\mathrm{2}} }+\left(\frac{\mathrm{64}}{\mathrm{189}}+\frac{\mathrm{11}}{\mathrm{14}}\right)^{\mathrm{2}} }}×\mathrm{8}×\mathrm{10} \\ $$$$\:\:\:\:=\frac{\mathrm{2160}}{\:\sqrt{\mathrm{2353}}}\approx\mathrm{44}.\mathrm{529}\:{N} \\ $$
Commented by ajfour last updated on 01/Feb/23
$${Thank}\:{you}\:{sir}! \\ $$
Answered by ajfour last updated on 01/Feb/23
Commented by ajfour last updated on 01/Feb/23
$$\left(\mathrm{4}\pi{a}^{\mathrm{3}} \right)\rho{g}\left({r}−{a}\right)\mathrm{sin}\:\alpha=\left(\mathrm{4}\pi{b}^{\mathrm{3}} \right)\left({r}−{b}\right)\mathrm{sin}\:\beta \\ $$$$\Rightarrow\:\:{t}={a}^{\mathrm{3}} \left({r}−{a}\right)\mathrm{sin}\:\alpha={b}^{\mathrm{3}} \left({r}−{b}\right)\mathrm{sin}\:\beta \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{90}°−\alpha−\theta\right)}{{r}−{b}}=\frac{\mathrm{sin}\:\left(\mathrm{90}°−\beta+\theta\right)}{{r}−{a}} \\ $$$$\:\:\:=\frac{\mathrm{sin}\:\left(\alpha+\beta\right)}{{a}+{b}} \\ $$$${N}\mathrm{cos}\:\left(\alpha+\theta\right)={Mg}\mathrm{sin}\:\alpha \\ $$$${N}\mathrm{cos}\:\left(\beta−\theta\right)={mg}\mathrm{sin}\:\beta \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)={k}\:\:,\:\mathrm{4}\pi\rho{g}\left(\frac{{a}+{b}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\right)={R} \\ $$$$\frac{\mathrm{cos}\:\left(\alpha+\theta\right)}{{r}−{b}}=\frac{\mathrm{cos}\:\left(\beta−\theta\right)}{{r}−{a}}=\frac{\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}{{a}+{b}} \\ $$$${N}=\frac{{Mg}\left({a}+{b}\right)\mathrm{sin}\:\alpha}{\:\left({r}−{b}\right)\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}=\frac{{a}^{\mathrm{3}} {R}\mathrm{sin}\:\alpha}{{r}−{b}} \\ $$$${N}=\frac{{mg}\left({a}+{b}\right)\mathrm{sin}\:\beta}{\left({r}−{a}\right)\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}=\frac{{b}^{\mathrm{3}} {R}\mathrm{sin}\:\beta}{{r}−{a}} \\ $$$$\mathrm{sin}\:\alpha=\left(\frac{{r}−{b}}{{a}^{\mathrm{3}} }\right)\frac{{N}}{{R}}=\lambda\left({r}−{b}\right)/{a}^{\mathrm{3}} \\ $$$$\mathrm{sin}\:\beta=\left(\frac{{r}−{a}}{{b}^{\mathrm{3}} }\right)\frac{{N}}{{R}}=\lambda\left({r}−{a}\right)/{b}^{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)={k} \\ $$$$\Rightarrow\:\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} \left(\frac{{r}−{b}}{{a}^{\mathrm{3}} }\right)^{\mathrm{2}} }\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} \left(\frac{{r}−{a}}{{b}^{\mathrm{3}} }\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:−\frac{\lambda^{\mathrm{2}} \left({r}−{a}\right)\left({r}−{b}\right)}{{a}^{\mathrm{3}} {b}^{\mathrm{3}} }={k} \\ $$$$\:\lambda=\frac{{N}}{{R}} \\ $$$$=\frac{\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}{\:\sqrt{\left(\frac{{r}−{a}}{{b}^{\mathrm{3}} }\right)^{\mathrm{2}} +\left(\frac{{r}−{b}}{{a}^{\mathrm{3}} }\right)^{\mathrm{2}} +\mathrm{2}{k}\left(\frac{{r}−{a}}{{b}^{\mathrm{3}} }\right)\left(\frac{{r}−{b}}{{a}^{\mathrm{3}} }\right)}} \\ $$$${R}=\mathrm{4}\pi\rho{g}\left(\frac{{a}+{b}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\right) \\ $$$${N}=\frac{\mathrm{4}\pi\rho{g}\left({a}+{b}\right){ab}\sqrt{{ab}}}{\:\sqrt{\left(\frac{{a}}{{b}}\right)^{\mathrm{3}} \left({r}−{a}\right)^{\mathrm{2}} +\left(\frac{{b}}{{a}}\right)^{\mathrm{3}} \left({r}−{b}\right)^{\mathrm{2}} +\mathrm{2}{k}\left({r}−{a}\right)\left({r}−{b}\right)}} \\ $$$${k}=\mathrm{cos}\:\left(\alpha+\beta\right)=\frac{\left({r}−{a}\right)^{\mathrm{2}} +\left({r}−{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({r}−{a}\right)\left({r}−{b}\right)} \\ $$$${N}=\frac{\left(\mathrm{4}\pi\rho{ab}\sqrt{{ab}}\right){g}\left({a}+{b}\right)}{\:\sqrt{\left(\mathrm{1}+\frac{{a}^{\mathrm{3}} }{{b}^{\mathrm{3}} }\right)\left({r}−{a}\right)^{\mathrm{2}} +\left(\mathrm{1}+\frac{{b}^{\mathrm{3}} }{{a}^{\mathrm{3}} }\right)\left({r}−{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }} \\ $$$$ \\ $$
Commented by mr W last updated on 01/Feb/23
$${very}\:{perfect}\:{sir}! \\ $$
Commented by mr W last updated on 02/Feb/23
$${what}\:{if}\:{we}\:{have}\:{three}\:{balls}? \\ $$
Commented by ajfour last updated on 02/Feb/23
$${cant}\:{say},\:{I}\:{am}\:{already}\:{happy}\:{with}\:{two}! \\ $$$$ \\ $$