Menu Close

Question-186053




Question Number 186053 by Rupesh123 last updated on 31/Jan/23
Answered by SEKRET last updated on 31/Jan/23
  a^2 −5a−1=0        a^2 =5a+1       a^3 =5a^2 +a=5(5a+1)+a=26a+5     (26a+5)^2 −140(26a+5)+5=      676a^2 −3380a−670=   676(5a+1)−3380a−670=     3380a+676−3380a−670=6
$$\:\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{\mathrm{a}}−\mathrm{1}=\mathrm{0}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} =\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{a}}^{\mathrm{3}} =\mathrm{5}\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}=\mathrm{5}\left(\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1}\right)+\boldsymbol{\mathrm{a}}=\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5} \\ $$$$\:\:\:\left(\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5}\right)^{\mathrm{2}} −\mathrm{140}\left(\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5}\right)+\mathrm{5}= \\ $$$$\:\:\:\:\mathrm{676}\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}= \\ $$$$\:\mathrm{676}\left(\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1}\right)−\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}= \\ $$$$\:\:\:\mathrm{3380}\boldsymbol{\mathrm{a}}+\mathrm{676}−\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}=\mathrm{6}\: \\ $$
Answered by Rasheed.Sindhi last updated on 31/Jan/23
AnOther Way  a^2 −5a−1=0 ; a^6 −140a^3 +5=?  a−(1/a)=5   (a−(1/a))^3 =5^3   a^3 −(1/a^3 )−3(a−(1/a))=125  a^3 −(1/a^3 )−3(5)=125  a^3 −(1/a^3 )=140  ▶ a^6 −140a^3 +5       =a^6 −140a^3 −1+6       =a^3 (a^3 −(1/a^3 )−140)+6       =a^3 (140−140)+6      =6
$$\mathbb{A}\boldsymbol{\mathrm{n}}\mathbb{O}\boldsymbol{\mathrm{ther}}\:\mathbb{W}\boldsymbol{\mathrm{ay}} \\ $$$${a}^{\mathrm{2}} −\mathrm{5}{a}−\mathrm{1}=\mathrm{0}\:;\:{a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} +\mathrm{5}=? \\ $$$${a}−\frac{\mathrm{1}}{{a}}=\mathrm{5}\: \\ $$$$\left({a}−\frac{\mathrm{1}}{{a}}\right)^{\mathrm{3}} =\mathrm{5}^{\mathrm{3}} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{3}\left({a}−\frac{\mathrm{1}}{{a}}\right)=\mathrm{125} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{3}\left(\mathrm{5}\right)=\mathrm{125} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }=\mathrm{140} \\ $$$$\blacktriangleright\:{a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} +\mathrm{5} \\ $$$$\:\:\:\:\:={a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} −\mathrm{1}+\mathrm{6} \\ $$$$\:\:\:\:\:={a}^{\mathrm{3}} \left({a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{140}\right)+\mathrm{6} \\ $$$$\:\:\:\:\:={a}^{\mathrm{3}} \left(\cancel{\mathrm{140}}−\cancel{\mathrm{140}}\right)+\mathrm{6} \\ $$$$\:\:\:\:=\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *