Menu Close

Question-186079




Question Number 186079 by TUN last updated on 31/Jan/23
Answered by a.lgnaoui last updated on 01/Feb/23
△ABD   et △ ACD   AD:cote commun  △ABD:    ((sin 46)/(BD)) =((sin X)/(AD))  (1)  △ACD  ((sin 12)/(CD))=((sin 62)/(AD))  (2)  (1)et(2)⇒  ((BDsin X)/(sin 46))=((CDsin 62)/(sin 12)) (3)  △BCD    ∡CDB=52−X  ((sin 8)/(BD))=((sin (52−X))/(CD))  (4)  (3)×(4)⇒((sin 8×sin X)/(sin 46))=((sin 62×sin( 52−X))/(sin 12))  sin 8×sin 12×sin X=sin 62×sin46sin(52−X)    sin (52−X)=sin 52(√(1−sin^2 X ))−cos 52sin X  posins Z=sin X   ((sin X)/(sin (52−X)))=((sin 62×sin 46)/(sin 8×sin 12))    =((sin X)/(sin 52cos X−cos 52sin X))=((sin 62×sin 46)/(sin 8×sin 12))   =(((tan X))/((sin 52−cos 52tan X)))=((sin 62×sin 46)/(sin 8×sin 12))  posins  t=tan X  (t/(sin 52−tcos 52))=((sin 62×sin 46)/(sin 8×sin 12))  t(sin 8sin 12+sin 62sin46cos 52) =sin 52sin 62sin 46)  t=((sin 52sin 62sin 46)/(sin 8sin 12+sin 62sin 46cos 52))  t=1,191753592594                       X=50°
ABDetACDAD:cotecommunABD:sin46BD=sinXAD(1)ACDsin12CD=sin62AD(2)(1)et(2)BDsinXsin46=CDsin62sin12(3)BCDCDB=52Xsin8BD=sin(52X)CD(4)(3)×(4)sin8×sinXsin46=sin62×sin(52X)sin12sin8×sin12×sinX=sin62×sin46sin(52X)sin(52X)=sin521sin2Xcos52sinXposinsZ=sinXsinXsin(52X)=sin62×sin46sin8×sin12=sinXsin52cosXcos52sinX=sin62×sin46sin8×sin12=(tanX)(sin52cos52tanX)=sin62×sin46sin8×sin12posinst=tanXtsin52tcos52=sin62×sin46sin8×sin12t(sin8sin12+sin62sin46cos52)=sin52sin62sin46)t=sin52sin62sin46sin8sin12+sin62sin46cos52t=1,191753592594X=50°
Commented by a.lgnaoui last updated on 01/Feb/23

Leave a Reply

Your email address will not be published. Required fields are marked *