Question Number 186111 by Rupesh123 last updated on 01/Feb/23
Commented by Rupesh123 last updated on 01/Feb/23
A right angle is rotated and translated as shown in the diagram
Commented by mr W last updated on 01/Feb/23
$${it}'{s}\:{not}\:{a}\:{fixed}\:{value},\:{it}\:{depends}\:{on}\:{the} \\ $$$${shape}\:{of}\:{the}\:{triangle}. \\ $$
Answered by HeferH last updated on 01/Feb/23
Commented by HeferH last updated on 01/Feb/23
$${I}\:{consider}\:{the}\:{entire}\:{diagram}\:{as} \\ $$$$\left.“{entire}\:{shape}'':\right) \\ $$
Commented by HeferH last updated on 01/Feb/23
$${Area}\:{shaded}:\:\mathrm{2}{S} \\ $$$${Area}\:{of}\:{the}\:{entire}\:{shape}:\:\mathrm{6}{S} \\ $$$$\frac{\mathrm{2}{S}}{\mathrm{6}{S}}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 01/Feb/23
$$\frac{\mathrm{2}{S}}{\mathrm{4}{S}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 01/Feb/23
Commented by mr W last updated on 01/Feb/23
$$\theta={the}\:{smaller}\:{angle} \\ $$$${total}\:{area}\:{of}\:{triangle} \\ $$$${A}=\frac{{c}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\mathrm{2}} \\ $$$${case}\:\mathrm{0}<\theta\leqslant\mathrm{30}° \\ $$$$\frac{{x}}{{c}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}\theta\right)}=\frac{\mathrm{cos}\:\theta}{\mathrm{cos}\:\mathrm{2}\theta} \\ $$$${A}_{{S}} =\frac{{c}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta} \\ $$$${A}_{\mathrm{1}} ={A}−{A}_{{S}} \\ $$$$\frac{{A}_{\mathrm{1}} }{{A}}=\mathrm{1}−\frac{{A}_{{S}} }{{A}}=\mathrm{1}−\frac{\left(\mathrm{1}−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\:\mathrm{cos}\:\mathrm{2}\theta}\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${case}\:\mathrm{30}°\leqslant\theta\leqslant\mathrm{45}° \\ $$$${A}_{{S}} =\frac{\left({c}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \:\mathrm{tan}\:\theta}{\mathrm{4}}=\frac{{c}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\mathrm{4}}=\frac{{A}}{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{{A}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{A}_{\mathrm{1}} }{{A}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 01/Feb/23