Menu Close

Question-186236




Question Number 186236 by ajfour last updated on 02/Feb/23
Answered by a.lgnaoui last updated on 02/Feb/23
1
$$\mathrm{1} \\ $$
Commented by ajfour last updated on 02/Feb/23
Its quite simple x_(min) =(1/( (√3)))
$${Its}\:{quite}\:{simple}\:{x}_{{min}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$
Commented by mr W last updated on 02/Feb/23
when α→0, x→0.  that means there is no minimum for  x.
$${when}\:\alpha\rightarrow\mathrm{0},\:{x}\rightarrow\mathrm{0}. \\ $$$${that}\:{means}\:{there}\:{is}\:{no}\:{minimum}\:{for} \\ $$$${x}. \\ $$
Commented by mr W last updated on 02/Feb/23
Commented by mr W last updated on 03/Feb/23
(x/1)=((sin α)/(sin ((π/3)+α+α)))  x=((sin α)/(sin ((π/3)+2α))) →_(α→0) 0  x=((sin α)/(sin ((π/3)+2α))) →_(α→(π/3)) ∞  ⇒x has no minimum and maximum.
$$\frac{{x}}{\mathrm{1}}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha+\alpha\right)} \\ $$$${x}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\mathrm{2}\alpha\right)}\:\underset{\alpha\rightarrow\mathrm{0}} {\rightarrow}\mathrm{0} \\ $$$${x}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\mathrm{2}\alpha\right)}\:\underset{\alpha\rightarrow\frac{\pi}{\mathrm{3}}} {\rightarrow}\infty \\ $$$$\Rightarrow{x}\:{has}\:{no}\:{minimum}\:{and}\:{maximum}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *