Question Number 186464 by mr W last updated on 04/Feb/23
Commented by mr W last updated on 04/Feb/23
$${general}\:{case}\:{for}\:{Q}\mathrm{186302}: \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the} \\ $$$${triangle}. \\ $$
Commented by Frix last updated on 05/Feb/23
$$\mathrm{Still}\:\mathrm{that}\:\mathrm{left}\:\mathrm{vertex}\:\mathrm{must}\:\mathrm{be}\:\mathrm{on}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{diameter}.\:\left(\mathrm{The}\:\mathrm{area}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:{rh}?\right) \\ $$$$\mathrm{Another}\:\mathrm{question}:\:\mathrm{What}\:\mathrm{if}\:\mathrm{the}\:\mathrm{right}\:\mathrm{angle} \\ $$$$\mathrm{has}\:\mathrm{got}\:\mathrm{a}\:\mathrm{different}\:\mathrm{fixed}\:\mathrm{value}? \\ $$
Commented by Frix last updated on 05/Feb/23
$$\mathrm{No}… \\ $$$$\mathrm{Maybe}\:\mathrm{we}\:\mathrm{can}\:\mathrm{try}\:\mathrm{to}\:\mathrm{see}\:\mathrm{it}\:\mathrm{the}\:\mathrm{other}\:\mathrm{way} \\ $$$$\mathrm{round}:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{circle}\:\mathrm{for}\:\mathrm{a}\:\mathrm{given} \\ $$$$\mathrm{rectangular}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{center}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{intersection}\:\mathrm{of}\:\mathrm{a}\:\mathrm{line}\:\mathrm{through}\:\mathrm{the}\:\mathrm{vertex} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{right}\:\mathrm{angle}\:\mathrm{and}\:\mathrm{a}\:\mathrm{line}\:\mathrm{in}\:\mathrm{a}\:\mathrm{right} \\ $$$$\mathrm{angle}\:\mathrm{to}\:\mathrm{the}\:\mathrm{first}\:\mathrm{one}\:\mathrm{which}\:\mathrm{goes}\:\mathrm{through} \\ $$$$\mathrm{that}\:\mathrm{other}\:\mathrm{vertex}.\:\mathrm{This}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a} \\ $$$$\mathrm{special}\:\mathrm{group}\:\mathrm{of}\:\mathrm{circles}… \\ $$
Commented by mr W last updated on 05/Feb/23
$${this}\:{is}\:{true}.\:{but}\:{it}'{s}\:{not}\:{obvious}\:{to}\:{me}. \\ $$$${or}\:{can}\:{you}\:{simply}\:{explain}\:{that}\:{the}\: \\ $$$${left}\:{vertex}\:{must}\:{lie}\:{on}\:{the}\:{horizontal} \\ $$$${diameter}\:{such}\:{that}\:{the}\:{area}\:{is}\: \\ $$$${maximum}? \\ $$
Commented by mr W last updated on 05/Feb/23
$${it}\:{is}\:{proved}\:{as}\:{shown}\:{below}\:{that}\:{for} \\ $$$${the}\:{maximum}\:{triangle}\:{the}\:{right} \\ $$$${angle}\:{vertex}\:{must}\:{lie}\:{on}\:{the}\:{horizontal} \\ $$$${diameter}.\:{the}\:{question}\:{is}\:{only}\:{that} \\ $$$${this}\:{result}\:{is}\:{not}\:{obvious}.\:{also}\:{for} \\ $$$${the}\:{question}\:{for}\:{minimum}\:{circle} \\ $$$${as}\:{you}\:{segguested}\:{above}\:{it}\:{is}\:{not} \\ $$$${obvious}\:{where}\:{its}\:{center}\:{should}\:{lie}. \\ $$$${so}\:{it}\:{doesn}'{t}\:{help},\:{because}\:{we}\:{don}'{t} \\ $$$${need}\:{a}\:{calculation}\:{proof}\:\left({which}\:{we}\right. \\ $$$$\left.{have}\:{already}\right),\:{but}\:{an}\:{obvious}\: \\ $$$${explanation}. \\ $$
Commented by Frix last updated on 05/Feb/23
$$\mathrm{Start}\:\mathrm{with}\:\mathrm{any}\:\mathrm{triangle}\:{ABC}. \\ $$$$\mathrm{The}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{circles}\:\mathrm{through}\:{A}\:\mathrm{and}\:{C}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{symmetry}\:\mathrm{axe}\:\mathrm{of}\:{AC}. \\ $$$$\mathrm{Let}\:{D}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{we}'\mathrm{re}\:\mathrm{looking} \\ $$$$\mathrm{for}.\:\mathrm{The}\:\mathrm{additional}\:\mathrm{condition}\:\mathrm{is}\:{CD}\bot{BD}. \\ $$$$\mathrm{There}\:\mathrm{are}\:\mathrm{only}\:\mathrm{2}\:\mathrm{possible}\:\mathrm{centers}\:{D}. \\ $$$$\mathrm{Draw}\:\mathrm{it},\:\mathrm{you}'\mathrm{ll}\:\mathrm{see}\:\mathrm{it}. \\ $$
Commented by mr W last updated on 05/Feb/23
$${i}\:{got}\:{the}\:{simple}\:{explanation}\:{why} \\ $$$${for}\:{the}\:{maximum}\:{triangle}\:{the}\:{vertex} \\ $$$${must}\:{lie}\:{on}\:{the}\:{horizontal}\:{diameter}. \\ $$
Commented by mr W last updated on 05/Feb/23
Commented by mr W last updated on 05/Feb/23
$${it}'{s}\:{easy}\:{to}\:{see}\: \\ $$$$\Delta=\left[{BCA}\right]=\left[{BCA}'\right]=\frac{{hd}}{\mathrm{2}} \\ $$$${d}_{{max}} ={diameter}=\mathrm{2}{r} \\ $$$$\Rightarrow\Delta_{{max}} =\frac{{h}×\mathrm{2}{r}}{\mathrm{2}}={hr} \\ $$$${when}\:{vertex}\:{C}\:{lies}\:{on}\:{the}\:{horizontal} \\ $$$${diameter}. \\ $$
Commented by ajfour last updated on 05/Feb/23
$$\Delta=\left[{BCA}\right]=\left[{BCA}'\right]\:\:\:{understood} \\ $$$${but}\:=\frac{{hd}}{\mathrm{2}}\:\:\:\:\left({how}?\right) \\ $$$$ \\ $$
Commented by mr W last updated on 05/Feb/23
Commented by mr W last updated on 05/Feb/23
$$\left[{BCA}'\right]=\left[{BCO}\right]+\left[{BOA}'\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{BO}×{d}_{\mathrm{1}} }{\mathrm{2}}+\frac{{BO}×{d}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{BO}×\mathrm{2}{d}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{h}×{d}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 05/Feb/23
$${i}\:{guess}\:{you}\:{mean} \\ $$$$=\frac{\left({h}+{s}\right){d}_{\mathrm{1}} }{\mathrm{2}}+\frac{\left({h}−{s}\right){d}_{\mathrm{1}} }{\mathrm{2}}=\frac{{h}\left({d}_{\mathrm{1}} +{d}_{\mathrm{2}} \right)}{\mathrm{2}}=\frac{{hd}}{\mathrm{2}} \\ $$$${Thanks}\:{sir},\:{i}\:{understand}\:{the} \\ $$$${explanation}\:{pretty}\:{well}\:{now}, \\ $$$${awesome}\:{reasoning}! \\ $$
Commented by mr W last updated on 06/Feb/23
$${i}\:{meant}\:\frac{{hd}_{\mathrm{1}} }{\mathrm{2}}+\frac{{hd}_{\mathrm{1}} }{\mathrm{2}}=\frac{{hd}}{\mathrm{2}}\:{indeed}. \\ $$$${i}\:{had}\:{a}\:{typo}\:{with}\:{CO}×{d}_{\mathrm{1}} .\:{it}\:{is}\:{BO}×{d}_{\mathrm{1}} . \\ $$
Commented by mr W last updated on 05/Feb/23
Answered by mr W last updated on 04/Feb/23
Commented by mr W last updated on 05/Feb/23
$${a}_{\mathrm{1}} {a}={c}_{\mathrm{1}} {c}=\left({h}−{r}\right)\left({h}+{r}\right)={h}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} =\frac{{h}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{a}} \\ $$$${b}^{\mathrm{2}} ={c}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} =\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left({a}−{a}_{\mathrm{1}} \right)^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} −\left({a}−{a}_{\mathrm{1}} \right)^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} +\left(\mathrm{2}{a}−{a}_{\mathrm{1}} \right){a}_{\mathrm{1}} \\ $$$${c}^{\mathrm{2}} =\mathrm{4}{r}^{\mathrm{2}} +\left(\mathrm{2}{a}−\frac{{h}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{a}}\right)×\frac{{h}^{\mathrm{2}} −{r}^{\mathrm{2}} }{{a}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} =\mathrm{2}\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)−\frac{\left({h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{b}^{\mathrm{2}} ={c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{2}\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)−\frac{\left({h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }−{a}^{\mathrm{2}} \\ $$$${area}\:\Delta=\frac{{ab}}{\mathrm{2}} \\ $$$${let}\:\Phi=\mathrm{4}\Delta^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Phi={a}^{\mathrm{2}} \left[\mathrm{2}\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)−\frac{\left({h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }−{a}^{\mathrm{2}} \right] \\ $$$$\Phi=\mathrm{2}\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){a}^{\mathrm{2}} −{a}^{\mathrm{4}} −\left({h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Phi=\mathrm{2}\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){a}^{\mathrm{2}} −{a}^{\mathrm{4}} −\left({h}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} {r}^{\mathrm{2}} \\ $$$$\Rightarrow\Phi=\mathrm{4}{h}^{\mathrm{2}} {r}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{h}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${we}\:{see}\:{the}\:{maximum}\:{of}\:\Phi\:{is}\:\mathrm{4}{h}^{\mathrm{2}} {r}^{\mathrm{2}} \\ $$$${when}\:{a}^{\mathrm{2}} ={h}^{\mathrm{2}} +{r}^{\mathrm{2}} . \\ $$$${that}\:{means}\:{the}\:{maximum}\:{area}\:{is} \\ $$$$\Delta_{{max}} ={hr},\:{when}\:{the}\:{right}\:{angle}\:{vertex} \\ $$$${lies}\:{on}\:{the}\:{horizontal}\:{diameter}. \\ $$
Commented by mr W last updated on 05/Feb/23