Menu Close

Question-186492




Question Number 186492 by mr W last updated on 05/Feb/23
Commented by mr W last updated on 05/Feb/23
unsolved question in #186283
$${unsolved}\:{question}\:{in}\:#\mathrm{186283} \\ $$
Answered by mr W last updated on 05/Feb/23
Commented by mr W last updated on 05/Feb/23
the diagram given in the question is  drawn not to scale and the lengthes  given are not properly selected,   therefore the diagram is in reality  not possible. but the method for the  solution is correct.
$${the}\:{diagram}\:{given}\:{in}\:{the}\:{question}\:{is} \\ $$$${drawn}\:{not}\:{to}\:{scale}\:{and}\:{the}\:{lengthes} \\ $$$${given}\:{are}\:{not}\:{properly}\:{selected},\: \\ $$$${therefore}\:{the}\:{diagram}\:{is}\:{in}\:{reality} \\ $$$${not}\:{possible}.\:{but}\:{the}\:{method}\:{for}\:{the} \\ $$$${solution}\:{is}\:{correct}. \\ $$
Commented by mr W last updated on 05/Feb/23
Commented by mr W last updated on 05/Feb/23
with these values we get  (6/(6+x))=((7−y)/(7+3))=(y/(12))  ⇒y=((42)/(11))  ⇒x=((90)/7)  cos α=((12^2 +(6+((90)/7))^2 −10^2 )/(2×12×(6+((90)/7))))=((445)/(504))  ⇒α=cos^(−1) ((445)/(504))≈28°
$${with}\:{these}\:{values}\:{we}\:{get} \\ $$$$\frac{\mathrm{6}}{\mathrm{6}+{x}}=\frac{\mathrm{7}−{y}}{\mathrm{7}+\mathrm{3}}=\frac{{y}}{\mathrm{12}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{42}}{\mathrm{11}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{90}}{\mathrm{7}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{12}^{\mathrm{2}} +\left(\mathrm{6}+\frac{\mathrm{90}}{\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} }{\mathrm{2}×\mathrm{12}×\left(\mathrm{6}+\frac{\mathrm{90}}{\mathrm{7}}\right)}=\frac{\mathrm{445}}{\mathrm{504}} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{445}}{\mathrm{504}}\approx\mathrm{28}° \\ $$
Commented by mr W last updated on 05/Feb/23

Leave a Reply

Your email address will not be published. Required fields are marked *