Menu Close

Question-186594




Question Number 186594 by mr W last updated on 06/Feb/23
Commented by mr W last updated on 06/Feb/23
old question reposted for other   solutions
$${old}\:{question}\:{reposted}\:{for}\:{other}\: \\ $$$${solutions} \\ $$
Answered by CElcedricjunior last updated on 06/Feb/23
(c/(sin𝛂))=((a+b)/(sin(110))) or (b/(sin70))=(c/(sin80))  =>c=((bsin80)/(sin70))  <=>((bsin80)/(sin𝛂sin70))=((a+b)/(sin110)) ★moivre    =>𝛂=sin^(−1) [(b/((a+b)))((sin(80)×sin(110))/(sin(70)))] ■cedric junior
$$\frac{\boldsymbol{{c}}}{\boldsymbol{{sin}\alpha}}=\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\boldsymbol{{sin}}\left(\mathrm{110}\right)}\:\boldsymbol{{or}}\:\frac{\boldsymbol{{b}}}{\boldsymbol{{sin}}\mathrm{70}}=\frac{\boldsymbol{{c}}}{\boldsymbol{{sin}}\mathrm{80}} \\ $$$$=>\boldsymbol{{c}}=\frac{\boldsymbol{{bsin}}\mathrm{80}}{\boldsymbol{{sin}}\mathrm{70}} \\ $$$$<=>\frac{\boldsymbol{{bsin}}\mathrm{80}}{\boldsymbol{{sin}\alpha{sin}}\mathrm{70}}=\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\boldsymbol{{sin}}\mathrm{110}}\:\bigstar\boldsymbol{{moivre}}\:\: \\ $$$$=>\boldsymbol{\alpha}=\boldsymbol{{sin}}^{−\mathrm{1}} \left[\frac{\boldsymbol{{b}}}{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)}\frac{\boldsymbol{{sin}}\left(\mathrm{80}\right)×\boldsymbol{{sin}}\left(\mathrm{110}\right)}{\boldsymbol{{sin}}\left(\mathrm{70}\right)}\right]\:\blacksquare\boldsymbol{{cedric}}\:\boldsymbol{{junior}} \\ $$$$ \\ $$
Answered by HeferH last updated on 06/Feb/23
Commented by HeferH last updated on 06/Feb/23
 70° >α ⇒  α ≠140° ⇒   α = 40°
$$\:\mathrm{70}°\:>\alpha\:\Rightarrow \\ $$$$\alpha\:\neq\mathrm{140}°\:\Rightarrow \\ $$$$\:\alpha\:=\:\mathrm{40}°\: \\ $$
Answered by ajfour last updated on 06/Feb/23
let   α+β=70°  ,  a=1          (c/(sin 80°))=(b/(sin 70°))=(1/(sin 30°))=2  (b/(sin α))=((1+b)/(sin 80°))  ⇒  sin α=((sin 80°)/(1+(1/(2sin 70°))))    =((2sin 80°sin 70°)/(2sin 70°+1))
$${let}\:\:\:\alpha+\beta=\mathrm{70}°\:\:,\:\:{a}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\frac{{c}}{\mathrm{sin}\:\mathrm{80}°}=\frac{{b}}{\mathrm{sin}\:\mathrm{70}°}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{30}°}=\mathrm{2} \\ $$$$\frac{{b}}{\mathrm{sin}\:\alpha}=\frac{\mathrm{1}+{b}}{\mathrm{sin}\:\mathrm{80}°} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\alpha=\frac{\mathrm{sin}\:\mathrm{80}°}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2sin}\:\mathrm{70}°}} \\ $$$$\:\:=\frac{\mathrm{2sin}\:\mathrm{80}°\mathrm{sin}\:\mathrm{70}°}{\mathrm{2sin}\:\mathrm{70}°+\mathrm{1}} \\ $$$$ \\ $$
Answered by Frix last updated on 06/Feb/23
((a+b)/(sin 80))=(b/(sin α))∧(b/(sin 70))=(a/(sin 30))  Solve both for a or b ⇒ insert ⇒  α=40°
$$\frac{{a}+{b}}{\mathrm{sin}\:\mathrm{80}}=\frac{{b}}{\mathrm{sin}\:\alpha}\wedge\frac{{b}}{\mathrm{sin}\:\mathrm{70}}=\frac{{a}}{\mathrm{sin}\:\mathrm{30}} \\ $$$$\mathrm{Solve}\:\mathrm{both}\:\mathrm{for}\:{a}\:\mathrm{or}\:{b}\:\Rightarrow\:\mathrm{insert}\:\Rightarrow \\ $$$$\alpha=\mathrm{40}° \\ $$
Answered by mr W last updated on 07/Feb/23
Commented by mr W last updated on 07/Feb/23
make BD=BE=a  AD=a+b=AC  ∠AED=∠AEC=110°  ΔAED≡ΔAEC  α=∠ADE=40°
$${make}\:{BD}={BE}={a} \\ $$$${AD}={a}+{b}={AC} \\ $$$$\angle{AED}=\angle{AEC}=\mathrm{110}° \\ $$$$\Delta{AED}\equiv\Delta{AEC} \\ $$$$\alpha=\angle{ADE}=\mathrm{40}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *