Question Number 186627 by Mingma last updated on 07/Feb/23
Commented by Frix last updated on 07/Feb/23
$$\mathrm{As}\:\mathrm{always}:\:\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{42} \\ $$$$\bullet\:\mathrm{We}\:\mathrm{have}\:\mathrm{2}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{6}\:\mathrm{unknowns}\:\Rightarrow \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{4}\:\mathrm{of}\:\mathrm{them}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{remaining}\:\mathrm{2}. \\ $$$$\bullet\:\mathrm{We}\:\mathrm{can}\:\mathrm{set}\:\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\mathrm{42}\:\Rightarrow\:\mathrm{We}\:\mathrm{now}\:\mathrm{have} \\ $$$$\mathrm{3}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{6}\:\mathrm{unknowns}\:\Rightarrow\:\mathrm{We}\:\mathrm{can} \\ $$$$\mathrm{choose}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{3} \\ $$
Answered by ajfour last updated on 07/Feb/23
$${z}={qx},\:\:{y}={px} \\ $$$${x}\left({a}+{bp}+{cq}\right)=\mathrm{20} \\ $$$${y}\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)=\mathrm{20} \\ $$$${z}\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)=\mathrm{20} \\ $$$${ax}+{by}+{cz}=\Sigma\frac{\mathrm{20}{a}}{{a}+{bp}+{cq}}=\mathrm{20} \\ $$$$\Rightarrow\:{a}\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right) \\ $$$$+{b}\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)\left({a}+{bp}+{cq}\right) \\ $$$$+{c}\left({a}+{bp}+{cq}\right)\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)=\mathrm{1} \\ $$$${let}\:\:\:\:?=\frac{\mathrm{1}}{{Q}} \\ $$$$\Rightarrow\:\:\:{x}+{y}+{z}={Q}\left({a}+{b}+{c}\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\left({a}+{bp}+{cq}\right)}+\frac{\mathrm{1}}{\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)} \\ $$$$\:\:\:+\frac{\mathrm{1}}{\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)}=\:\:\frac{{Q}\left({a}+{b}+{c}\right)}{\mathrm{20}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}+{p}+{q}}{{s}}=\frac{{Q}\left({a}+{b}+{c}\right)}{\mathrm{20}} \\ $$$$\&\:\:\:\frac{{as}^{\mathrm{2}} }{{pq}}+\frac{{bs}^{\mathrm{2}} }{{q}}+\frac{{cs}^{\mathrm{2}} }{{p}}=\mathrm{1} \\ $$$$\Rightarrow\:\:{s}^{\mathrm{3}} ={pq} \\ $$$$\Rightarrow\:\:\:\mathrm{20}\left(\mathrm{1}+{p}+{q}\right)={Q}\left({a}+{b}+{c}\right)\left({pq}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{16}−\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$${Q}=\frac{\mathrm{20}\left(\mathrm{1}+{p}+{q}\right)}{\left({pq}\right)^{\mathrm{1}/\mathrm{3}} \left({a}+{b}+{c}\right)} \\ $$$${Q}=\frac{\mathrm{20}\left(\mathrm{1}+\frac{{y}}{{x}}+\frac{{z}}{{x}}\right)}{\left(\frac{{yz}}{{x}^{\mathrm{2}} }\right)^{\mathrm{1}/\mathrm{3}} \left({a}+{b}+{c}\right)}=\frac{\mathrm{20}{Q}}{\left({xyz}\right)^{\mathrm{1}/\mathrm{3}} } \\ $$$$\Rightarrow\:\:\left({xyz}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{20} \\ $$$${by}\:{symmetry} \\ $$$${a}^{\mathrm{2}} ={b}^{\mathrm{2}} ={c}^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{3}} \\ $$$${x}+{y}+{z}=\mathrm{20}+\mathrm{20}+\mathrm{20} \\ $$$$\frac{\mathrm{1}}{?}={Q}=\frac{{x}+{y}+{z}}{{a}+{b}+{c}} \\ $$$$\:\:\:\:\:\:{Q}=\pm\frac{\mathrm{60}}{\mathrm{3}\left(\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\right)}=\pm\mathrm{5}\sqrt{\mathrm{3}} \\ $$$$?=\frac{\mathrm{1}}{{Q}}=\pm\frac{\mathrm{1}}{\mathrm{5}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$
Answered by ajfour last updated on 07/Feb/23
$${or}\:{simply}\:\:{if}\:\:{at}\:{all}\:\:{answer}\:{is}\:{unique} \\ $$$${then}\:\:\:{we}\:{can}\:{get}\:{the}\:{same}\:\:{as}\:{a}\:{special} \\ $$$${case}\:{too}\:\:\:{a}={b}={c} \\ $$$${a}\left({x}+{y}+{z}\right)=\mathrm{20} \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{3}} \\ $$$${a}=\pm\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\frac{\mathrm{3}{a}}{\mathrm{20}/{a}}=\frac{\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{20}}=\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$