Menu Close

Question-186630




Question Number 186630 by DAVONG last updated on 07/Feb/23
Answered by mr W last updated on 07/Feb/23
a_k =1+2+3+...+k=((k(k+1))/2)=((k^2 +k)/2)  Σ_(k=1) ^n a_k =(1/2)(Σ_(k=1) ^n k^2 +Σ_(k=1) ^n k)  =((n(n+1)(2n+1))/(12))+((n(n+1))/4)  =((n(n+1)(n+2))/6)  with n=2022:  ((n(n+1)(n+2))/6)  =((2022×2023×2024)/6)=1 379 864 024
$${a}_{{k}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{k}=\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}=\frac{{k}^{\mathrm{2}} +{k}}{\mathrm{2}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\right) \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{12}}+\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{4}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}} \\ $$$${with}\:{n}=\mathrm{2022}: \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}} \\ $$$$=\frac{\mathrm{2022}×\mathrm{2023}×\mathrm{2024}}{\mathrm{6}}=\mathrm{1}\:\mathrm{379}\:\mathrm{864}\:\mathrm{024} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *