Menu Close

Question-186662




Question Number 186662 by pascal889 last updated on 08/Feb/23
Answered by Frix last updated on 08/Feb/23
u=(√(x+1))≥0 ⇔ x=u^2 −1  (u^2 /( (√(u+2))))=2u^2 −1  v=(√(u+2))≥(√2) ⇔ u=v^2 −1  (((v^2 −2)^2 )/v)=2v^4 −8v^2 +7  v^5 −(v^4 /2)−4v^3 +2v^2 +((7v)/2)−2=0  (v−1)(v^2 +v−1)(v^2 −(v/2)−2)=0  v≥(√2) ⇒ v=((1+(√(33)))/4) ⇒ u=((1+(√(33)))/8) ⇒  x=((−15+(√(33)))/(32))
$${u}=\sqrt{{x}+\mathrm{1}}\geqslant\mathrm{0}\:\Leftrightarrow\:{x}={u}^{\mathrm{2}} −\mathrm{1} \\ $$$$\frac{{u}^{\mathrm{2}} }{\:\sqrt{{u}+\mathrm{2}}}=\mathrm{2}{u}^{\mathrm{2}} −\mathrm{1} \\ $$$${v}=\sqrt{{u}+\mathrm{2}}\geqslant\sqrt{\mathrm{2}}\:\Leftrightarrow\:{u}={v}^{\mathrm{2}} −\mathrm{1} \\ $$$$\frac{\left({v}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }{{v}}=\mathrm{2}{v}^{\mathrm{4}} −\mathrm{8}{v}^{\mathrm{2}} +\mathrm{7} \\ $$$${v}^{\mathrm{5}} −\frac{{v}^{\mathrm{4}} }{\mathrm{2}}−\mathrm{4}{v}^{\mathrm{3}} +\mathrm{2}{v}^{\mathrm{2}} +\frac{\mathrm{7}{v}}{\mathrm{2}}−\mathrm{2}=\mathrm{0} \\ $$$$\left({v}−\mathrm{1}\right)\left({v}^{\mathrm{2}} +{v}−\mathrm{1}\right)\left({v}^{\mathrm{2}} −\frac{{v}}{\mathrm{2}}−\mathrm{2}\right)=\mathrm{0} \\ $$$${v}\geqslant\sqrt{\mathrm{2}}\:\Rightarrow\:{v}=\frac{\mathrm{1}+\sqrt{\mathrm{33}}}{\mathrm{4}}\:\Rightarrow\:{u}=\frac{\mathrm{1}+\sqrt{\mathrm{33}}}{\mathrm{8}}\:\Rightarrow \\ $$$${x}=\frac{−\mathrm{15}+\sqrt{\mathrm{33}}}{\mathrm{32}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *