Question Number 186692 by ajfour last updated on 08/Feb/23
Commented by ajfour last updated on 08/Feb/23
$$\left({i}\right)\:{Find}\:{u},\:{given}\:{the}\:{rest}. \\ $$$$\left({ii}\right)\:{Repeat}\:\left({i}\right)\:\:{if}\:{R}_{\mathrm{1}} ={a}\:,\:{R}_{\mathrm{2}} ={b}. \\ $$
Answered by mr W last updated on 08/Feb/23
Commented by mr W last updated on 09/Feb/23
$${g}_{{l}} ={g}\:\mathrm{sin}\:\theta \\ $$$${g}_{{r}} ={g}\:\mathrm{cos}\:\theta \\ $$$${L}={vt}+\frac{{g}_{{l}} {t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${t}=\frac{−{v}+\sqrt{{v}^{\mathrm{2}} +\mathrm{2}{g}_{{l}} {L}}}{{g}_{{l}} } \\ $$$${u}_{\mathrm{1}} ^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}{g}_{{r}} {R}\left(\mathrm{1}−\mathrm{cos}\:\varphi\right) \\ $$$${N}={mg}_{{r}} \mathrm{cos}\:\varphi+\frac{{mu}_{\mathrm{1}} ^{\mathrm{2}} }{{R}}={mg}_{{r}} \mathrm{cos}\:\varphi+\frac{{mu}^{\mathrm{2}} −\mathrm{2}{mg}_{{r}} {R}\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)}{{R}} \\ $$$${N}={mg}_{{r}} \left(\mathrm{3}\:\mathrm{cos}\:\varphi−\mathrm{2}\right)+\frac{{mu}^{\mathrm{2}} }{{R}}\geqslant\mathrm{0} \\ $$$$\frac{{u}^{\mathrm{2}} }{{R}}\geqslant\mathrm{5}{g}_{{r}} =\mathrm{5}{g}\:\mathrm{cos}\:\theta\:\Rightarrow{u}\geqslant\sqrt{\mathrm{5}{gR}\:\mathrm{cos}\:\theta} \\ $$$${u}_{\mathrm{1}} =\frac{{Rd}\varphi}{{dt}}=\sqrt{{u}^{\mathrm{2}} −\mathrm{2}{g}_{{r}} {R}\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)} \\ $$$$\sqrt{\frac{{R}}{\mathrm{2}{g}_{{r}} }}×\:\frac{{d}\varphi}{\:\sqrt{\frac{{u}^{\mathrm{2}} }{\mathrm{2}{g}_{{r}} {R}}−\mathrm{1}+\mathrm{cos}\:\varphi}}={dt} \\ $$$$\sqrt{\frac{\mathrm{2}{R}}{{g}_{{r}} }}\int_{\mathrm{0}} ^{\pi} \frac{{d}\varphi}{\:\sqrt{\frac{{u}^{\mathrm{2}} }{\mathrm{2}{g}_{{r}} {R}}−\mathrm{1}+\mathrm{cos}\:\varphi}}={t} \\ $$$$\sqrt{\frac{\mathrm{2}{R}}{{g}_{{r}} }}\int_{\mathrm{0}} ^{\pi} \frac{{d}\varphi}{\:\sqrt{\frac{{u}^{\mathrm{2}} }{\mathrm{2}{g}_{{r}} {R}}−\mathrm{1}+\mathrm{cos}\:\varphi}}=\frac{−{v}+\sqrt{{v}^{\mathrm{2}} +\mathrm{2}{g}_{{l}} {L}}}{{g}_{{l}} } \\ $$$$\Rightarrow\sqrt{\frac{\mathrm{2}{R}}{{g}\:\mathrm{cos}\:\theta}}\int_{\mathrm{0}} ^{\pi} \frac{{d}\varphi}{\:\sqrt{\frac{{u}^{\mathrm{2}} }{\mathrm{2}{gR}\:\mathrm{cos}\:\theta}−\mathrm{1}+\mathrm{cos}\:\varphi}}=\frac{−{v}+\sqrt{{v}^{\mathrm{2}} +\mathrm{2}{gL}\:\mathrm{sin}\:\theta}}{{g}\:\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\frac{\mathrm{4}{gR}\:\mathrm{sin}\:\theta}{\:{u}}{F}\left(\frac{\pi}{\mathrm{2}}\mid\frac{\mathrm{4}{gR}\:\mathrm{cos}\:\theta}{\:{u}^{\mathrm{2}} }\right)=\sqrt{{v}^{\mathrm{2}} +\mathrm{2}{gL}\:\mathrm{sin}\:\theta}−{v} \\ $$
Commented by ajfour last updated on 09/Feb/23
$${I}\:{get}\: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{\sqrt{{R}\mathrm{tan}\:\theta}}{\:\sqrt{\left(\frac{{u}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{g}_{{R}} {R}}−\mathrm{1}\right)+\mathrm{cos}\:\varphi}}{d}\varphi \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\:{L}} \frac{{dx}}{\:\sqrt{{x}+\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{g}_{{L}} }}} \\ $$$${but}\:{i}\:{want}\:{to}\:{deal}\:{this}\:{using} \\ $$$${Torque}-{Angular}\:{Momentum}\:{ways} \\ $$$${too}! \\ $$
Commented by ajfour last updated on 09/Feb/23
Thank you Sir. What is this F(theta) Fourier Integral?
Commented by mr W last updated on 10/Feb/23