Question Number 186701 by Mingma last updated on 08/Feb/23
Commented by aba last updated on 08/Feb/23
$$\frac{\mathrm{4}}{\mathrm{5}} \\ $$
Commented by Mingma last updated on 09/Feb/23
can you show workings?
Answered by som(math1967) last updated on 09/Feb/23
$$\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\left({ax}+{by}+{cz}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{25}×\mathrm{16}−\mathrm{20}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} {y}^{\mathrm{2}} +{a}^{\mathrm{2}} {z}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} {y}^{\mathrm{2}} +{b}^{\mathrm{2}} {z}^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} {x}^{\mathrm{2}} +{c}^{\mathrm{2}} {y}^{\mathrm{2}} +{c}^{\mathrm{2}} {z}^{\mathrm{2}} −{a}^{\mathrm{2}} {x}^{\mathrm{2}} −{b}^{\mathrm{2}} {y}^{\mathrm{2}} −{c}^{\mathrm{2}} {z}^{\mathrm{2}} \\ $$$$−\mathrm{2}{abxy}−\mathrm{2}{bcyz}−\mathrm{2}{cazx}=\mathrm{0} \\ $$$$\left({ay}−{bx}\right)^{\mathrm{2}} +\left({bz}−{cy}\right)^{\mathrm{2}} +\left({az}−{cx}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\left({ay}−{bx}\right)=\mathrm{0}\Rightarrow\frac{{x}}{{y}}=\frac{{a}}{{b}}\Rightarrow\frac{{x}}{{a}}=\frac{{y}}{{b}} \\ $$$$\Rightarrow{bz}−{cy}=\mathrm{0}\Rightarrow\frac{{y}}{{z}}=\frac{{b}}{{c}}\Rightarrow\frac{{y}}{{b}}=\frac{{z}}{{c}} \\ $$$$\therefore\frac{{x}}{{a}}=\frac{{y}}{{b}}=\frac{{z}}{{c}}={k}\:\left({let}\right) \\ $$$${x}={ak},{y}={bk},{z}={ck} \\ $$$$\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{25} \\ $$$${k}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)=\mathrm{25} \\ $$$$\:{k}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\frac{\left({a}+{b}+{c}\right)}{{k}\left({a}+{b}+{c}\right)}=\frac{\mathrm{1}}{{k}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$
Answered by mr W last updated on 09/Feb/23
$${vector}\:{method} \\ $$$$\boldsymbol{{p}}={ai}+{bj}+{ck} \\ $$$$\boldsymbol{{q}}={xi}+{yj}+{zk} \\ $$$$\mid\boldsymbol{{p}}\mid=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }=\sqrt{\mathrm{16}}=\mathrm{4} \\ $$$$\mid\boldsymbol{{q}}\mid=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }=\sqrt{\mathrm{25}}=\mathrm{5} \\ $$$$\boldsymbol{{p}}\centerdot\boldsymbol{{q}}={ax}+{by}+{cz}=\mathrm{20} \\ $$$$\boldsymbol{{p}}\centerdot\boldsymbol{{q}}=\mid\boldsymbol{{p}}\mid\mid\boldsymbol{{q}}\mid\:\mathrm{cos}\:\theta=\mathrm{4}×\mathrm{5}\:\mathrm{cos}\:\theta=\mathrm{20}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{20}\:\mathrm{cos}\:\theta=\mathrm{20}\:\Rightarrow\mathrm{cos}\:\theta=\mathrm{1}\:\Rightarrow\theta=\mathrm{0}°\:\Rightarrow\boldsymbol{{p}}//\boldsymbol{{q}} \\ $$$$\Rightarrow\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\lambda,\:{say} \\ $$$$\lambda=\frac{\mid\boldsymbol{{p}}\mid}{\mid\boldsymbol{{q}}\mid}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\frac{\lambda{x}+\lambda{y}+\lambda{z}}{{x}+{y}+{z}}=\lambda=\frac{\mathrm{4}}{\mathrm{5}}\:\checkmark \\ $$