Menu Close

Question-186732




Question Number 186732 by mr W last updated on 09/Feb/23
Answered by mr W last updated on 09/Feb/23
let′s generally find the maximum of  S=a_1 +a_2 +...+a_n =Σ_(k=1) ^n a_k   with  (a_1 )^2 +(2a_2 )^2 +...+(na_n )^2 =Σ_(k=1) ^n (ka_k )^2 =T    F=a_1 +a_2 +...+a_n +λ[(a_1 )^2 +(2a_2 )^2 +...+(na_n )^2 −T]  (∂F/∂a_k )=1+2λk^2 a_k =0  ⇒a_k =−(1/(2λk^2 ))  Σ_(k=1) ^n (ka_k )^2 =T  Σ_(k=1) ^n (−(1/(2λk)))^2 =T  (1/(4λ^2 ))Σ_(k=1) ^n (1/k^2 )=T  ⇒λ=±(1/2)(√((Σ_(k=1) ^n (1/k^2 ))/T))  ⇒a_k =±(1/k^2 )(√(T/(Σ_(k=1) ^n (1/k^2 ))))  for a_k >0, a_k =(1/k^2 )(√(T/(Σ_(k=1) ^n (1/k^2 ))))  ⇒S_(max) =Σ_(k=1) ^n a_k =(√(T/(Σ_(k=1) ^n (1/k^2 ))))Σ_(k=1) ^n (1/k^2 )                =(√(TΣ_(k=1) ^n (1/k^2 )))  in current case: n=50, T=42925  ⇒S_(max) =(√(42925Σ_(k=1) ^(50) (1/k^2 )))                ≈264.119
$${let}'{s}\:{generally}\:{find}\:{the}\:{maximum}\:{of} \\ $$$${S}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} \\ $$$${with} \\ $$$$\left({a}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{2}{a}_{\mathrm{2}} \right)^{\mathrm{2}} +…+\left({na}_{{n}} \right)^{\mathrm{2}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({ka}_{{k}} \right)^{\mathrm{2}} ={T} \\ $$$$ \\ $$$${F}={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}} +\lambda\left[\left({a}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{2}{a}_{\mathrm{2}} \right)^{\mathrm{2}} +…+\left({na}_{{n}} \right)^{\mathrm{2}} −{T}\right] \\ $$$$\frac{\partial{F}}{\partial{a}_{{k}} }=\mathrm{1}+\mathrm{2}\lambda{k}^{\mathrm{2}} {a}_{{k}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{{k}} =−\frac{\mathrm{1}}{\mathrm{2}\lambda{k}^{\mathrm{2}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({ka}_{{k}} \right)^{\mathrm{2}} ={T} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{2}\lambda{k}}\right)^{\mathrm{2}} ={T} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}\lambda^{\mathrm{2}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }={T} \\ $$$$\Rightarrow\lambda=\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}{{T}}} \\ $$$$\Rightarrow{a}_{{k}} =\pm\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\sqrt{\frac{{T}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}} \\ $$$${for}\:{a}_{{k}} >\mathrm{0},\:{a}_{{k}} =\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\sqrt{\frac{{T}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}} \\ $$$$\Rightarrow{S}_{{max}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} =\sqrt{\frac{{T}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{{T}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }} \\ $$$${in}\:{current}\:{case}:\:{n}=\mathrm{50},\:{T}=\mathrm{42925} \\ $$$$\Rightarrow{S}_{{max}} =\sqrt{\mathrm{42925}\underset{{k}=\mathrm{1}} {\overset{\mathrm{50}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\approx\mathrm{264}.\mathrm{119} \\ $$
Answered by qaz last updated on 09/Feb/23
a_1 +a_2 +...+a_(50)   =(1/1)∙(1∙a_1 )+(1/2)(2a_2 )+(1/3)(3a_3 )+...+(1/(50))(50a_(50) )  ≤(√(((1/1))^2 +((1/2))^2 +...+((1/(50)))^2 ))∙(√((1∙a_1 )^2 +(2a_2 )^2 +...+(50a_(50) )^2 ))  =(√(42925Σ_(k=1) ^(50) (1/k^2 )))
$${a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{\mathrm{50}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}\centerdot\left(\mathrm{1}\centerdot{a}_{\mathrm{1}} \right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{a}_{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}{a}_{\mathrm{3}} \right)+…+\frac{\mathrm{1}}{\mathrm{50}}\left(\mathrm{50}{a}_{\mathrm{50}} \right) \\ $$$$\leqslant\sqrt{\left(\frac{\mathrm{1}}{\mathrm{1}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +…+\left(\frac{\mathrm{1}}{\mathrm{50}}\right)^{\mathrm{2}} }\centerdot\sqrt{\left(\mathrm{1}\centerdot{a}_{\mathrm{1}} \right)^{\mathrm{2}} +\left(\mathrm{2}{a}_{\mathrm{2}} \right)^{\mathrm{2}} +…+\left(\mathrm{50}{a}_{\mathrm{50}} \right)^{\mathrm{2}} } \\ $$$$=\sqrt{\mathrm{42925}\underset{{k}=\mathrm{1}} {\overset{\mathrm{50}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }} \\ $$
Commented by qaz last updated on 09/Feb/23
prove  ::  a_1 b_1 +a_2 b_2 +...+a_n b_n ≤(√(a_1 ^2 +a_2 ^2 +...+a_n ^2 ))∙(√(b_1 ^2 +b_2 ^2 +...+b_n ^2 ))  ???  a^→ =(a_1 ,a_2 ,...,a_n )   ,   b^→ =(b_1 ,b_2 ,...,b_n )  a^→ ∙b^→ =∣a^→ ∣∣b^→ ∣cos (a^→ ,b^→ )  ⇒a^→ ∙b^→ ≤∣a^→ ∣∣b^→ ∣  ⇒a_1 b_1 +a_2 b_2 +...+a_n b_n ≤(√(a_1 ^2 +a_2 ^2 +...+a_n ^2 ))∙(√(b_1 ^2 +b_2 ^2 +...+b_n ^2 ))
$${prove}\:\:::\:\:{a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} +…+{a}_{{n}} {b}_{{n}} \leqslant\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +…+{a}_{{n}} ^{\mathrm{2}} }\centerdot\sqrt{{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +…+{b}_{{n}} ^{\mathrm{2}} }\:\:??? \\ $$$$\overset{\rightarrow} {\boldsymbol{{a}}}=\left({a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,…,{a}_{{n}} \right)\:\:\:,\:\:\:\overset{\rightarrow} {\boldsymbol{{b}}}=\left({b}_{\mathrm{1}} ,{b}_{\mathrm{2}} ,…,{b}_{{n}} \right) \\ $$$$\overset{\rightarrow} {\boldsymbol{{a}}}\centerdot\overset{\rightarrow} {\boldsymbol{{b}}}=\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid\mathrm{cos}\:\left(\overset{\rightarrow} {\boldsymbol{{a}}},\overset{\rightarrow} {\boldsymbol{{b}}}\right) \\ $$$$\Rightarrow\overset{\rightarrow} {\boldsymbol{{a}}}\centerdot\overset{\rightarrow} {\boldsymbol{{b}}}\leqslant\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid \\ $$$$\Rightarrow{a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} +…+{a}_{{n}} {b}_{{n}} \leqslant\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +…+{a}_{{n}} ^{\mathrm{2}} }\centerdot\sqrt{{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +…+{b}_{{n}} ^{\mathrm{2}} } \\ $$
Commented by mr W last updated on 09/Feb/23
nice approach!
$${nice}\:{approach}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *